

This book describes numerous innovative methods, structures, machines and methods that have been devoted to Kentucky agriculture, particularly burley tobacco, over a half century of the golden leaf era.

BURLEY INNOVATIONS: A HALF CENTURY OF BURLEY TECHNOLOGY

By George A Duncan

Order the book from the publisher BookLocker.com

https://www.booklocker.com/p/books/12184.html?s=pdf

or from your favorite neighborhood or online bookstore.

BURLEY INNOVATIONS A HALF CENTURY OF BURLEY TECHNOLOGY

George A. Duncan

GEORGE A. DUNCAN, PHD, PE

George A. Duncan devoted a professional career to advancing technology for Kentucky farmers, families and businesses. He began life as a youth, as the only child of Dillard and Elizabeth Duncan on the small family farm near Auburn, Kentucky, tinkering with an erector set, a Lionel train set and a few other 'modern' toys in the 1940s. He 'invented' his special motorized bike with a 2x8 board, a salvaged one-cylinder gasoline engine and the front and rear assemblies of a scrapped bicycle into a V-belt driven bike. Push-off to get started and short the spark to stop! *The first powered skate-board!* What a fascination and pleasure as a pre-driver to go visit friends and shoot hoops a few miles away on Sunday afternoons.

Adjusting and maintaining a small assortment of farm machinery under his Dad's watchful eye honed his skills with mechanical devices. Fabricating transistorized circuits from *Popular Electronics* opened his perspectives to the world of future computer technology. His school teacher-mother made sure he did his homework on time, completely and accurately.

In his junior year at Auburn High he read an article about a new curriculum at the University of Kentucky-Agricultural Engineering! That was it—engineering in agriculture! He packed up his new clothes in the fall of 1957 and left home for the first time in his life. A four-year Kentucky Farm Bureau scholarship paid a large portion of tuition and lodging in those years.

Upon completing dozens of class papers, a thesis, hundreds of news articles for the Cooperative Extension Service, journal papers, a dissertation, sharing family life with a wife for sixty-plus years and three wonderful children, spouses and two grandsons, I am

completing a book on my personal experiences and with colleagues on burley technology over half a century.

I retired in 2007 as Extension Professor and Extension Specialist from the Biosystems and Agricultural Engineering Department, University of Kentucky College of Agriculture, Food and Environment with fifty three years as student, staff or faculty.

For you who have dealt with the golden leaf, I trust you will share in the joy of reminiscing the tough days and searching for those wonderful labor-saving methods and machines that have been attempted. For all readers, read on with interest about more than 140 burley innovations and trials with new burley technology and the people who blazed the trail.

Jeorge Duncan

Copyright © 2021 George A. Duncan

Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in, or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical. Photocopying, recording, or otherwise), without the prior written permission of both the copyright owner and the above publisher of this book.

The scanning, uploading, and distribution of this book via the Internet or via any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions, and do not participate in or encourage electronic piracy of copyrighted materials. Your support of the author's rights is appreciated.

ISBN 978-0-1-64719-837-4

Printed on Acid Free Paper

TABLE OF CONTENTS

PREFACE * V

Acknowledgments _____

BURLEY INNOVATIONS—A HALF CENTURY OF BURLEY TECHNOLOGY

PROLOGUE * 1

CHAPTER 1

BURLEY PRODUCTION PRIOR TO 1960S * 5

Plant Beds	5
Hand Pegging	6
Mechanical Transplanter	7
Cultivation	7
Insect Control	7
Disease reduction	7
Sprayers	8
Irrigation	8
Harvest	8
Air-Curing	8
Stripping	9
Marketing	10

CHAPTER 2

PROGRESS ACCELERATES—GROWING TRANSPLANTS AND FIELD PRODUCTION * 11

Growing Transplants	11
Styrofoam Trays and Float Beds	13
Greenhouse Transplant Production	15
Tray Sanitation	16
Transplanting, Multi-Row Transplanters	18
No-Till Transplanting	18
Plant Spacing in the Field	19
Hand-Hoe Weeds & Cultivation to Chemicals	20
Fertility Advancements	20
Variety Development	21

V

Preface

Diseases	21
Chemicals to the Aid	21
Herbicides	21
Insecticides	21
Fungicides	21
Suckercides	22
Hand Dusting to Backpack and Power Sprayers	22
Irrigation Equipment	23
Pumps, Pipes, Big Guns to Trickle	23
Hand Topping	24
Mechanical Topping	24
Chemical Topping Trials	25
Plant Blow-Over	25
Plant Pre-Wilting	25
Manual Harvest	26
Major Production Regulatory Changes	27
Poundage Control	27
No-Net Cost	28
Sale of Quotas	28
Tobacco Master Settlement Agreement	28
Quota System Buyout	29

CHAPTER 3

MECHANIZING THE HARVEST.. MAYBE—STALK SPEARING MACHINES * 30

Harvest Mechanization Concepts	30
University of Kentucky Early Harvesting Technology	30
Irvine Harvesting Aid	30
The Floating Spear	31
High-Clearance Tractor-Mounted Spearing Machine	31
Spiral-Held Floating Spear	32
Physical Properties of a Tobacco Plant	32
UK Prototype Harvester with Offset-Point Spear	33
CTD Towed 'Offset-Point-Turret' Spearing Machine	33
Other Early Mechanical Spearing Trial	34
Winn Self-Propelled Stalk Spearing Machine	34
Middleton Tractor Towed and Self-Propelled Spearing Machines	36
Small Self-Propelled One or Two Worker Harvesting Aids—Manual Spearing	36

Preface

USDA Self-Propelled, Sloped-Conveyor Harvesting Aids	37
USDA Self-propelled, 'Sticker Chain' Harvesting Aid	37
Innovative Technologies Harvesting Aid	38
Greenwood Self-Propelled Harvesting Aids	39
UK Harvesting Aid and Accessories	39
Four Star Harvesting Aid	40
Giles 'The Green Machine' Harvesting Aid	41
Plant Hanging Variations	41
York Harvesting Aid	42
Helbling Harvesting Aid	42
UK Mechanical Spearing Harvesting Aid	42
Williamson Mechanical Spearing Harvesting Aid	44
Decloet Burley Harvesting Aid	44
Economics of Harvesting Aids	44
Cutters: The Bachtold Burley Cutter	44
Woods Tractor Mounted Sickle Bar Cutter, Windrow Machine	45
End of an Era?	45

CHAPTER 4

MECHANIZING THE HARVEST... MAYBE... STALK NOTCHING MACHINES * 46

Vogel Proposed Stalk Notching	46
The Real Notching Work Began—Maryland Gravely	46
A Big Boost for Mechanization Projects: Philip Morris Grant	47
UK Tractor Semi-Mounted Notcher-Conveyor Machine & Wire Strung Wooden Frames	48
UK Towed Notching Harvester with Wire Strung Portable Wooden Frames	48
Hunt Machine Modification and Portable Frame Design	49
Powell Towed Harvester	49
UK Automated Notching-Hanging Harvester with Portable Metal Frames	49
GCH Automated Harvester with Portable Metal Frames	50
UK Towed Harvester with Individual Channels	51
Tobacco Mechanization Field Days	52
Kirpy Tractor-Mounted Harvester—Cutting, Notching	52
Powell Tractor-Mounted Harvester—Cutting, Notching	53
UK Hiboy Notcher-Cutter	55
Economic Analysis of Potential Burley Harvesting Machines and Other Developments	55

CHAPTER 5

MECHANICALLY ASSISTED STALK HANDLING—FIELD TO CURING FACILITY * 58

Early Priming and Stalk Harvest	58
Early Portable Frames	58
UK Forklift Systems	59
Farm Scale System at R J Reynolds Tobacco Co. Farm	60
Wills Hi-Lift Housing	60
Gay Hi-lift Housing	61
Thomas Pneumatic Stick Lift	61
UK Steerable Carrier Design	61
UK Cantilever Plant-Holding Frames	62
UK Portable Frames with Stick-Less Clips, Plastic Sheet Plant Holders	62
Gaffney variation of portable frames	63
Pipe Frame Trailers	63
Walden and Baker Channel Steel Frame Trailers	63
Juett Powered Chain Conveyor-Trailes	64
UK Slant Stick Wagon Frame	64
More UK Portable Frames	64
UK-USDA Hydraulic Lift Trailer	65
UK Field Curing Structure And Mechanized Housing System	65
Eaton Self-Loading Trailer	66
Cable Lift Methods	66
Helbling Twin-Rail Housing System	66
UK Cable-Hoist Housing System	68
Curing with cable-hoist beams of tobacco	69
UK Portable Tier Rails and Saw-Horse Framework	70
North Carolina Frame and Transport Trailer	70
Summary of Mechanical Handling	71

CHAPTER 6

BARNS AND FIELD STRUCTURES FOR AIR CURING * 72

The Human-Pounds-Energy Factor	72	
UK Lower Height Air-Cure Barn	74	
Two-Tier-Tall Two-Driveway Partially Enclosed Barn	74	
Three-Tier-Tall Two-Driveway Barn	74	
Four- and Five-Tier-Tall Barns	75	
Field Structures	75	

x | Burley Innovations—A Half Century of Burley Technology

Burton Pioneering	75
UK Economy Post Row Structure	76
Producer Variations of Field Structures	77
Wire Supports for Stick Hanging	77
Wire Strung Field Structure for Notched Plant Hanging	78
Pallet Racks for Curing Burley Tobacco	79
Summary of Curing Structures	81

CHAPTER 7

STALK-CURING ADVANCEMENTS * 82

Burley Is Traditionally Air-Cured	82
Natural Ventilation—Barn Curing Basics	82
Fans in Barns—1965 Experiment	83
UK Two-Tier Forced-Air Barn	84
Fans in Conventional Barns	86
PTO-Powered Airplane Propeller Fans in Barns	87
Curing Environmental Studies: Effects of Low and High Humidity	87
Curing Bulked Stalks	89
Summary Bulk-Stalk Curing	90
Dry Weight Loss	90
Solar Field Curing	91
Burley Curing Technology	94
UK Burley Curing Advisory	96
Philip Morris and Altria Curing Studies	97
Hutchens Curing Enhancement	98
TSNA Issues and Curing Management	98

CHAPTER 8

MOISTURE MANAGEMENT, BULKING AND STRIPPING AIDS * 100

Pliable ("In Case") Condition	100
Moisture Meters	101
Dielectric Properties of Burley Leaves	101
Infrared Instruments	102
Froment 1210 Meter	102
Moisture Register DA-8	103
Table-Top Microwave Appliance	103
Pieratt's "Tomcat [®] " Microwave Tobacco Moisture Content Appliance	104

Preface

Bale Probe Moisture Meter Developed	104
Bale High-Moisture Study Conducted	104
Malcam Commercial Moisture Analyzer Becomes the Standard	105
Artificial Moisture Production	106
Misting Nozzles	106
Spinning Disks	107
Wetted Pads	108
Steam Conditioning	108
Conditioning Room	108
Bulking Tobacco	109
Stick Pullers	109
The Evolution of Loose-Leaf Burley in Small Bales	109
Stripping with Leaf Removal Machines	109
A Barrage of Mechanical Leaf Stripping Machines Hit the Market	110
Sperry-New Holland Leaf Stripping Aid	110
Ring Leaf Stripping Aid	111
Strip Master I Leaf Stripping Aid	111
Quick-Strip leaf stripping Aid	111
Breezeway Leaf Stripping Aid	112
Golden Leaf Stripping Aid	112
Patterson leaf stripping aid	112
The Stripper Leaf Stripping Aid	112
Evaluation of Stripping Machines and Hand Method	113
Super Grader Leaf Stripping Aid	114
The Pinkham-Reynolds Leaf Stripping Aid	114
Stripping Wheel Leaf Stripping Aid	115
Tennessee Carousel Leaf Stripping Aid	116
UK Leaf Stripping-Sorting Aid	117
Single-Chain Stalk-Holder Leaf Stripping Aid	118
Dual-Chain Stick-Conveyor leaf Stripping Aid	118
Hurst Trailer Mounted Leaf Stripping Setup	119
Hutchens-Parr Gathering-Belt-Conveyor Stripping Aid	119
Carolina Tobacco Services (CTS) Leaf Removal Machine	120
UK High Speed Stalk Segmenter and Pneumatic leaf Separation Machine	122
Labor Comparison of Various Stripping Machines	125
Stalk Chopper	125
Roberts Farm	125

Table of Contents

England Farm	126	
Wade Farm	126	
Langley Farm	126	
Davis Farm	127	
UK Prototype Stalk Chopper	127	

LEAF HARVEST AND BULK CURING * 129

Conventional Priming	129
Early Leaf Priming Studies	129
Advances in Bulk-Curing Flue-Cured Tobacco	131
Research on Bulk-Curing Burley	131
Commercial Bulk-Curing Trials with Burley	134
UK On-Farm Bulk-Curing Trials	134
First Burley Bale Box Fabricated	136
Forced Natural Air and Heated Air-Cure	137
Curing Leaves in Racks	137
Curing Leaves in Boxes	138
Bulk-Curing of Burley Diminishes	139
Star Scientific Arises, Fades	143

CHAPTER 10

BURLEY GOES BALING * 144

The Golden Leaf Era	144
The Historic Conventional Way	144
The Evolution of Burlap Sheet Tobacco Marketing	145
Early Mechanical Stripper Development and Burley Loose-Leaf Origins	147
First Experimental Leaf Stripping Machine	149
Leaf Removal Forces	150
Burley Loose-Leaf Packaging Regains Recognition	151
Loose-Leaf Packaging Trials Resume	152
Some Farmers were 'Chomping at the Bit'	153
Prior North Carolina Loose-Leaf Studies	156
Kentucky Farm Bureau Tobacco Committee Intervenes	156
1975 On-Farm and Warehouse Results	159
1976 Warehouse Handling Studies and Results	160
Trial Auction of Bales—'Just an Experiment'	162

Table of Contents

Commercial Lab Packaging Test	163
USDA Throws a 'Stumbling Block'	164
A Year of Turmoil—1977	164
The UK 'White Paper'	166
Council for Burley Tobacco Votes 'No Price Supports'	168
Bale Research Continues	168
Loose-Leaf Marketing Coop Formed for 1977-78 Crop	171
Council for Burley Tobacco Approves 1978 Loose-Leaf Marketing Program	171
USDA Approves 1978-79 Loose-Leaf Marketing Program for Five Percent of Quota	172
1979-80 Crop Approved for Twenty Percent of Farm Quota with 'State Pool.'	172
Original 'Big Bale' Sale	174
Computer Simulation of Kentucky Burley Market	174
USDA Report	175
Market Results for 1979-1980	176
Federal Grading Regulations Allowed 25 Percent Bale Sale in 1980-81	176
Burley Sales Committee Formed	177
A Big Boost for Loose-Leaf and Tobacco Projects—R J Reynolds Tobacco Co. Grant	177
Unlimited Sale of Burley in Bales Allowed in 1981-82:	178
Not All Producers Were Happy	179
Baskets, Pallets, or Slip-Sheets—1981-83	179
"Slip-Sheet" Packaging Developed 1983-1984	180
Improving Bale Security—1984-85	182
Burley Bale Committee Tackles Short Weights	183
Safe Storage Moisture Content for Burley Bales	183
Extensive Labor Data Reported for Small Bales	184
Big Burley Bale Introduced-2005	185
Auction Market OUT; Contract Buying IN	186
Golden Era Fades	187
EPILOGUE * 188	
A Farewell Tribute to Burley	189
ENDNOTES * 191	
APPENDIX * 205	
Burley Tobacco Harvesting, Handling, Curing and Stripping Patents	205
INDEX * 212	

EPILOGUE

Tobacco has been an important crop for domestic and export use since colonial days. The value of the crop was a major factor in old country and new country trade during those early years. The discovery of a special yellowish plant in the 1870s led to the prominence of 'burley' as a distinct crop in Kentucky and surrounding states for the last century.

The production of a burley crop was, and still is, labor intensive. Many efforts have been made to 'mechanize' the crop. The bulky plant was not easily handled by machinery. Traditional curing was a slow natural-air process occurring over a five- to six-week period. Harvested plants were sheltered and exposed to rather narrow moisture (relative humidity) and temperature ranges. Kentucky's fall climate and the burley curing environment were compatible to produce the tan to brown color and quality leaf desired by the commercial companies.

Fig. 10-31 An era has ended. Copy from Bowling Green Daily News (KPNS).

Creative designs and innovations by universities, entrepreneurs and commercial entities have sought to reduce the toil and drudgery of burley production labor through mechanization while maintaining or improving the quality of the leaf. Notable success has been achieved with reduction of the total workerhours from over 310 worker-hours per acre to approximately 153 worker-hours per acre in the last half century.

Numerous technological innovations have been reviewed and presented in this book, including 19 prototype harvesting

machines, 18 leaf removal (stripping) devices, and over a dozen curing barn and lower cost field structure plans. Small harvesting aids had the greatest number of commercial fabrication and sales—over 300 machines. Additionally, about a dozen of the pull-type notching harvesters and three of the automated-notching harvesters were manufactured and sold. Several hundred of the tobacco leaf removal machines were fabricated and sold in a three to four year flurry of purchases.

Major improvements were shown for float bed transplant production, carousel transplanters, hiboy sprayers, more labor efficient barn and curing structures and loose-leaf baling.

Float-bed transplant production was rapidly adopted by producers and replaced plant beds in less than a decade.

Loose-leaf baling techniques and regulation changes took six years to be tested and approved, and four years to take over 90 percent of the market. The loose-leaf baling method was credited with saving Kentucky producers about \$30 million per year in labor costs.

Likewise, genetic improvement of varieties provided greater yields, sustained quality characteristics and gave more disease resistance. Efficient fertility practices and approved chemicals contributed further to profitable production.

The golden years of burley production have flourished and faded. Decreasing domestic usage and reduced commercial demand for high quality burley along with foreign competition took a toll on burley production. The 2019 production was the lowest Kentucky acreage (41 thousand acres) and poundage (77.9 million pounds) since the 1930s.

Air-cured burley production has tumbled from the ridges and valleys of Kentucky and other states never to be restored to crop dominance again. Alternatives to tobacco have been proposed and tried. Increasing all field crop, cattle, swine, horse, poultry, forestry, greenhouse, specialty crop and other enterprises will help compensate for the loss. Burley producing families must adapt and change. There is no other choice to sustain the agricultural livelihood of Kentucky farmers.

A Farewell Tribute to Burley

Air-cured burley once stood tall, then air-cured burley had a great fall.

All the domestic tobacco leaders who tried to sustain couldn't return air-cured burley to dominance again.

Air-cured burley long reigned as king, it made the cash registers ring.

The leaf was good as gold, Christmas came when the leaf sold.

Mortgages and loans were paid, tuition and clothes deposits made.

Once the golden leaf was proudly engraved on public edifices to adorn but eventually the product succumbed to public scorn.

Epilogue

Market demand vanished from the hills and vale never again restored for extensive sale.

Scientific endeavors faded like a mystery, technological innovations became history.

There laid hands of burley all neat and non-curly

replaced by a loose-leaf bale ready for highest-bid sale.

Its destiny vaguely known, might never be replaced by a new crop grown.

What else is there to grow the farm community would like to know.

Farming must go on when burley is gone.

The youth have left home to seek degrees and the world roam.

Parents left looking out the windows early longing to see a golden crop of burley.

Forever we shall remember the days when burley was revered and paid the ways. *Never again, farewell burley.*

Fig. E-1. Mature burley plants ready for harvest.

©George A. Duncan September 29, 2020

This book describes numerous innovative methods, structures, machines and methods that have been devoted to Kentucky agriculture, particularly burley tobacco, over a half century of the golden leaf era.

BURLEY INNOVATIONS: A HALF CENTURY OF BURLEY TECHNOLOGY

By George A Duncan

Order the book from the publisher BookLocker.com

https://www.booklocker.com/p/books/12184.html?s=pdf

or from your favorite neighborhood or online bookstore.