


Extensive, example-based Linux shell programming reference includes an 
English-to-shell dictionary, a tutorial and handbook, and many tables of 
information useful to programmers. Besides listing more than 2000 shell one-
liners, it explains the principles and techniques of how to increase 
performance (execution speed, reliability, and efficiency), which apply to many 
other programming languages beyond shell. 

 
 

 
High Performance Linux Shell 

Programming Reference 
2015 Edition 

  
 
 

Order the complete book from  
 

Booklocker.com 
 

http://www.booklocker.com/p/books/7831.html?s=pdf 
 

or from your favorite neighborhood  
or online bookstore.  

 
 

Your free excerpt appears below. Enjoy! 



 

High 
Performance 
Linux Shell 

Programming 
Reference 

2015 Edition 



High Performance Linux Shell Programming Reference, 2015 Edition 
Copyright © 2015 by Edward J. Smeltz 
ISBN 978-1-63263-401-6 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, electronic, mechanical, recording or otherwise, without the prior 
written permission of the author. 
Printed on acid-free paper 
All information herein is believed to be accurate and correct, but the author and Booklocker.com, Inc 
assume no responsibility for errors or omissions, or for damages resulting from the use of the information 
contained in this book. 
Manufacturers and sellers often use specific designations for their products to distinguish them in the 
marketplace. Where such designations appear in this book, and E. J. Smeltz was aware of a trademark 
claim, the designations have been printed in all caps or in initial caps. All trademarks are the property of 
their respective owners. 
Each URL cited herein was operational as of the time the passage referring to each was written. Because 
web sites sometimes relocate or disappear from the web, some web pages might cease to appear at the 
URLs indicated for them at a future point in time. A web search might reveal a new URL for the desired 
material if a cited URL goes away. 
Booklocker.com, Inc. 2015 
www.BookLocker.com 
 
 
 
Watch for the upcoming novel series from E. J. Smeltz entitled Obeying God Uphill. 
 



xi 

Table of Contents 
Preface ........................................................................................................................................................ xiii 
Section 1 - Basic Information ...................................................................................................................... 1 

1.01  Why Use Linux Shell Scripts? .......................................................................................................... 3 
1.02  The Structure of this Book ................................................................................................................ 7 
1.03  How to Create a Safe Environment for Learning Shell ................................................................... 13 
1.04  How to Find Commands .................................................................................................................. 17 
1.05  Conventions and Terminology ........................................................................................................ 21 
1.06  Glossary of Shell Commands and Keywords of Interest ................................................................. 23 
1.07  Common Linux System Status Commands & Tools ....................................................................... 41 
1.08  Commands for Delayed, Periodic, or Unattended Execution .......................................................... 43 
1.09  Shells ............................................................................................................................................... 45 
1.10  bash Internal Shell Variables and set Options ............................................................................ 49 
1.11  File Types, File Extensions, and Magic Numbers ........................................................................... 53 
1.12  POSIX Character Class Definitions ................................................................................................ 59 
1.13  ASCII Character Tables .................................................................................................................. 63 
1.14  ANSI Escape Codes ........................................................................................................................ 71 

Section 2 - Linux Shell Programming Dictionary ................................................................................... 75 
2.01  Appending ....................................................................................................................................... 83 
2.02  Archiving, Unarchiving ................................................................................................................... 91 
2.03  Calculating General Numbers and Dates ...................................................................................... 101 
2.04  Calculating Geometric Quantities ................................................................................................. 121 
2.05  Calculating Maximums, Minimums, Means, Medians, Modes, and Totals .................................. 129 
2.06  Comparing Files, Running Checksums ......................................................................................... 137 
2.07  Compressing, Uncompressing ....................................................................................................... 141 
2.08  Converting Data from One Type to Another ................................................................................. 157 
2.09  Converting Numbers from One Base to Another .......................................................................... 167 
2.10  Copying and Duplicating Characters, Words, Fields, and Lines .................................................. 171 
2.11  Copying and Moving Files on a Single Host or Between Multiple Hosts .................................... 177 
2.12  Counting, Indexing, Numbering, Serializing ................................................................................ 203 
2.13  Deleting Characters, Words, Fields, and Lines ............................................................................. 213 
2.14  Encoding, Decoding ...................................................................................................................... 233 
2.15  Finding Files, Executing Commands on Found Files ................................................................... 237 
2.16  Formatting Data, Reformatting Data ............................................................................................. 261 
2.17  Generating Numbers and Strings, Random and Non-random ....................................................... 281 
2.18  Graphing, Plotting Data ................................................................................................................. 297 
2.19  Inserting, Including ........................................................................................................................ 309 
2.20  Joining Lines Horizontally, Pasting Files Side by Side ................................................................ 321 
2.21  Joining Lines Vertically, Concatenating Files and Streams .......................................................... 325 
2.22  Listing, Extracting, Displaying ...................................................................................................... 329 
2.23  Looping and Converting Between Pipelines and Variables .......................................................... 347 
2.24  Prefixing, Prepending .................................................................................................................... 373 
2.25  Scheduling and Timing Job Execution .......................................................................................... 381 
2.26  Separating Lines Horizontally ....................................................................................................... 387 



E. J. Smeltz  

xii 

2.27  Separating, Splitting Lines Vertically ............................................................................................ 391 
2.28  Shifting, Rearranging Items Horizontally Within a Line ............................................................... 395 
2.29  Shuffling, Randomizing Line Order .............................................................................................. 399 
2.30  Sorting Line Order ......................................................................................................................... 403 
2.31  Sorting, Separating Items to Different Destinations ...................................................................... 409 
2.32  Substituting, Translating, Replacing One Item with Another ........................................................ 415 
2.33  Testing, Conditionals, Exit Values, Pipelines as Conditionals ...................................................... 423 

Section 3 - One-Liners that Show or Control the State of the Computer ............................................ 457 
3.01  CPU, Memory, Drivers, Kernel, Time, Locale, and General Hardware ........................................ 459 
3.02  Data Storage, File Systems, Individual Files ................................................................................. 475 
3.03  Network.......................................................................................................................................... 495 
3.04  Peripherals...................................................................................................................................... 505 
3.05  Users and Groups ........................................................................................................................... 509 

Section 4  Tutorial and Handbook -- How to Write Shell Scripts ........................................................ 517 
4.01  ABCs of Designing and Writing a Shell Script ............................................................................. 521 
4.02  Arrays ............................................................................................................................................. 527 
4.03  Automating Tasks and Sensing the State of the Computer ............................................................ 531 
4.04  Benchmarking Commands ............................................................................................................. 551 
4.05  Capturing and Reproducing Interactive Sessions .......................................................................... 559 
4.06  Cleaning up Temporary Files ......................................................................................................... 561 
4.07  Combining, Splitting, and Buffering Data Streams ....................................................................... 565 
4.08  Controlling Data Stream Flow in Pipes ......................................................................................... 571 
4.09  Controlling Program Execution Flow ............................................................................................ 581 
4.10  Delimiters, Data Field Tags, Data Extraction Tips ........................................................................ 589 
4.11  Embedding Commands Within Commands ................................................................................... 601 
4.12  Enhancing Script Reliability .......................................................................................................... 609 
4.13  Finding and Using Points of Reference in a File ........................................................................... 623 
4.14  Generating a Basic Formatted Report ............................................................................................ 629 
4.15  Handling Interrupts ........................................................................................................................ 633 
4.16  Manipulating Data in Binary Files and Streams ............................................................................ 637 
4.17  Maximizing Execution Speed by Conserving Computer Resources ............................................. 649 
4.18  Metacharacters: Characters with a Second Meaning ..................................................................... 677 
4.19  Redirecting I/O on Local and Remote Hosts ................................................................................. 697 
4.20  Regular Expressions ....................................................................................................................... 717 
4.21  Requesting, Conditioning and Qualifying User Inputs .................................................................. 737 
4.22  Setting up a Working Environment from Within a Script ............................................................. 751 
4.23  Simplifying Your Scripts ............................................................................................................... 759 
4.24  Standardizing Your Scripts ............................................................................................................ 765 
4.25  Table-driven Scripts ....................................................................................................................... 767 
4.26  Thinking About Thinking: Engaging in Mental Gymnastics ........................................................ 771 
4.27  Throttling and Overdrive Techniques ............................................................................................ 781 
4.28  Zone 42: Interesting Solutions Looking for a Problem to Solve ................................................... 789 

Bibliography .............................................................................................................................................. 797 
 



41 

1.07  Common Linux System Status Commands & Tools 
 

General-purpose RAM / Swap Disk Hardware Network Config Hardware 
atop free blockdev ethtool biosdecode 
collectl htop hdparm ifconfig dmidecode 
colplot ipcs lsblk ip lsdev 
dmesg numastat lsscsi ip6tables lsdvb 
dstat slabtop multipath iptables lshal 
gdb swapon  netstat lshw 
monit top Disk Partitions  lspci 
nagios vmstat blkid Network Diags lspcmcia 
nmon  cfdisk arp lsusb 
oprofiled Drivers / Modules disktype arping mcelog 
perf ethtool fdisk fping  
sar lsdev gdisk ifstat Printing 
stap lsmod kpartx iftop lp 
valgrind lspci parted iostat lpadmin 
xosview modinfo partx iptraf lpc 
 modprobe sfdisk iptstate lpinfo 
CPU Hardware systool vmstat mtr lpoptions 
arch   nload lpq 
lscpu Users / Groups LVM ping lpstat 
uname chage blkid tcptraceroute  
 finger lvdisplay traceroute Display / Terminal 
CPU Processes groups lvs  stty 
jobs grpck pvdisplay Network Traffic toe 
pmap last pvs argus xlsclients 
powertop lastb vgdisplay cacti xlsfonts 
prtstat pwck vgs dropwatch  
ps w  dsniff Misc 
runlevel who File Systems dumpcap apachetop 
strace whoami blkid nmap setserial 
w whois df ntop stty 
  du pOf  
CPU Load Files / Directories dumpe2fs tcpdump NFS 
htop chkrootkit dumpe4fs vnstat mountstats 
iostat cksum findfs wireshark nfsiostat 
mpstat file fuser xprobe2 nfsstat 
top find iostat  showmount 
uptime getfacl iotop Network Ports  
vmstat ldd lsof lsof Samba 
 less mount netstat net 
Automatic ls stat nc nmblookup 
at lsattr tune2fs rpcinfo smbclient 
atq lsinitrd tune4fs ss smbstatus 
chkconfig lsof vmstat  testparm 
crontab md5sum  DNS / Resolver  
service more Security dig Time 
 objdump certwatch dnstop date 
Virtual machines size getenforce getent ntpdc 
virsh tree getsebool host ntpq 
virt-top type openssl hostname ntpstat 
virt-what wc semanage nslookup ntptrace 



E. J. Smeltz  

42 

The above commands are designed to show something about the computer system itself as a whole or the 
items in it: the hardware of which it is composed, the way it is configured, the things it is doing, the files in 
its file systems. And so on. Because they give a view into the local computer system or perhaps a remote 
host, they can be useful when you are troubleshooting a system or the things it is trying to do. Many of 
these commands overlap with one another or belong in more categories than what have been shown. One 
page holds only so much. 
Some of these commands are strictly interactive, but many can be used in scripts. Some are installed as 
part of a base Linux system, but others must be specifically added. Not all commands exist on all varieties 
of Linux. This table is offered only as a general reference and is not by any means exhaustive. The table is 
an initial starting point of a place to look for commands that could be useful in discovering computer 
system or network status. 
 



101 

2.03  Calculating General Numbers and Dates 
What This Chapter Covers 
To "calculate" in this context means to use one or more mathematical operations to determine a numeric 
value. Examples of this are adding, subtracting, multiplying, dividing, and computing squares and square 
roots. Both integer and floating-point techniques are included. Data stream and shell variable approaches 
are covered. 
This chapter covers the following types of calculations: 

• integer addition, subtraction, multiplication, division, modulus (remainder) 
• incrementing and decrementing 
• truncating or rounding decimal numbers to integers 
• showing absolute values 
• calculating with numbers in bases other than base 10 
• floating-point addition, subtraction, multiplication, division 
• powers of n 
• square roots 
• calculating the value of e, natural logs and powers of e 
• Bessel functions 
• calculating the value of pi 
• converting between degrees and radians 
• outputting integer values 
• outputting in floating-point format 
• outputing in exponential notation 
• outputting in exponential or floating-point (auto-choose) 
• trigonometric functions: sin, cos, sec, csc, tan, cot 
• trigonometric functions: arcsin, arccos, arctan 
• hyperbolic functions: sinh, cosh, sech, csch, tanh, coth 
• hyperbolic functions: arcsinh, arccosh, arctanh 
• prime factors 
• non-prime numbers 
• prime numbers 
• factorials 
• number sequences (arithmetic and geometric) 
• network settings (subnet masks, prefix bits, broadcast networks) 
• dates, times, durations, calendars 

Where to Find Other Things 
To create random numbers, see the "Generating Numbers and Strings, Random and Non-random" chapter 
in Section 2. To convert between number bases, see the "Converting Numbers from One Base to Another" 
chapter in Section 2. To calculate perimeters, areas, and volumes, see the "Calculating Geometric 
Quantities" chapter in Section 2. To make statistical calculations, see the "Calculating Maximums, 
Minimums, Means, Medians, and Totals" chapter in Section 2. If you want to focus on counting, see the 



E. J. Smeltz  

102 

"Counting, Indexing, Numbering, Serializing" chapter in Section 2 or the "Looping and Converting 
Between Pipelines and Variables" chapter in Section 2.  

Warnings, Tips, and Suggestions 
It is always good practice to use the man or info command (whichever is available) to verify the syntax 
and effect of any command before executing it on your computer. 
Below are the meanings of the I/O identifiers: 

• "[NN]" is "no data in, no data out": execute this as a standalone command line. 
• "[NO]" is "no data in, data out": execute this to start a data stream. 
• "[IO]" is "data in, data out": execute this in the middle of a data stream. 
• "[IN]" is "data in, no data out": execute this to end a data stream. 

The I/O identifier appears in the description portion of each one-liner table entry. 

When you need to make floating-point calculations, I suggest you use commands such as awk or bc 
(binary calculator) to perform the calculations. Most other calculation methods on a Linux computer work 
only with integers. The dc command (desk calculator) provides another floating-point calculation method, 
but it uses reverse polish notation, and I do not care much for it. It seems unnecessarily confusing to use 
relative to the other computational methods. A few examples of dc are provided for the sake of 
completeness, but I prefer to deal with awk and bc instead. 
Because of the importance of numeric calculations in shell scripting, I have tried in most cases in this 
chapter to include two types of one-liners for each operation: one type that processes data streams and one 
type that works with shell variables. As always, if you can process data as a stream instead of as individual 
shell variables, stream processing will tend to execute much faster. With the means to calculate using 
either approach, though, you can use the option that best fits your situation. Sometimes the nature of the 
task does not lend itself to stream-oriented computation, or if you execute a given command only once in 
each running of a script, execution speed might not matter much for that particular calculation. 
In most chapters in Section 2, spaces are used in the one-liners to improve readability in places where they 
do not create a problem with syntax. In those other chapters, spaces often appear where they are allowed 
but not required. In this chapter, though, I make every effort to omit the spaces where they are not needed. 
This to help you get accustomed to seeing spaces where there need to be spaces. A one-liner such as 

x=`expr $a + $b` 

works fine as written, but if you omit the spaces around the plus sign as in 
x=`expr $a+$b` 

the one-liner breaks. Furthermore, the expr command in particular has some unusual character escaping 
needs, such as  

x=`expr $a \* $b` 

Therefore, if you try to execute 
x=`expr $a * $b` 

it will not work. 



High Performance Linux Shell Programming Reference 

103 

One-Liners: Calculating General Numbers and Time 
 

Desired Action  Command Line 
Integer addition, subtraction, 
multiplication, division, exponent, 
modulus (remainder) 

 

show the sum of field1 and field2: [IO] awk '{print int($1+$2)}' 

put the sum of $a and $b into variable 
"x": [NN] 

x=$(($a+$b)) 

put the sum of $a and $b into variable 
"x": [NN] 

x=$[$a+$b] 

put the sum of $a and $b into variable 
"x": [NN] 

x=$(expr $a + $b) 

put the sum of $a and $b into variable 
"x": [NN] 

x=`expr $a + $b` 

put the sum of $a and $b into variable 
"x": [NN] 

let x=$a+$b 

show the difference of field1 and field2: 
[IO] 

awk '{print int($1-$2)}' 

put the difference of $a and $b into 
variable "x": [NN] 

x=$(($a-$b)) 

put the difference of $a and $b into 
variable "x": [NN] 

x=$[$a-$b] 

put the difference of $a and $b into 
variable "x": [NN] 

x=$(expr $a - $b) 

put the difference of $a and $b into 
variable "x": [NN] 

x=`expr $a - $b` 

put the difference of $a and $b into 
variable "x": [NN] 

let x=$a-$b 

show the product of field1 and field2: 
[IO] 

awk '{print int($1*$2)}' 

put the product of $a and $b into variable 
"x": [NN] 

x=$(($a*$b)) 

put the product of $a and $b into variable 
"x": [NN] 

x=$[$a*$b] 

put the product of $a and $b into variable 
"x": [NN] 

x=$(expr $a \* $b) 

put the product of $a and $b into variable 
"x": [NN] 

x=`expr $a \* $b` 

put the product of $a and $b into variable 
"x": [NN] 

let x=$a*$b 

show field1 exponent field2: [IO] awk '{print int($1**$2)}' 

show field1 exponent field2: [IO] awk '{print int($1^$2)}' 



E. J. Smeltz  

104 

Desired Action  Command Line 
put $a exponent $b into variable "x": 
[NN] 

x=$(($a**$b)) 

put $a exponent $b into variable "x": 
[NN] 

x=$[$a**$b] 

put $a exponent $b into variable "x": 
[NN] 

let x=$a**$b 

show the value of field1 divided field2: 
[IO] 

awk '{print int($1/$2)}' 

put the value of $a divided by $b into 
variable "x": [NN] 

x=$(($a/$b)) 

put the value of $a divided by $b into 
variable "x": [NN] 

x=$[$a/$b] 

put the value of $a divided by $b into 
variable "x": [NN] 

x=$(expr $a / $b) 

put the value of $a divided by $b into 
variable "x": [NN] 

x=`expr $a / $b` 

put the value of $a divided by $b into 
variable "x": [NN] 

let x=$a/$b 

show the remainder left when field1 is 
divided by field2: [IO] 

awk '{print $1%$2}' 

show the remainder left when $a is 
divided by $b: [NO] 

echo "$a % $b" | bc 

show the integer remainder left when 
field1 is divided by field2: [IO] 

awk '{print int($1%$2)}' 

put the remainder left when $a is divided 
by $b into variable "x": [NN] 

x=$(($a%$b)) 

put the remainder left when $a is divided 
by $b into variable "x": [NN] 

x=$(expr $a % $b) 

put the remainder left when $a is divided 
by $b into variable "x": [NN] 

x=`expr $a % $b` 

put the remainder left when $a is divided 
by $b into variable "x": [NN] 

let x=$a%$b 

  

Incrementing and decrementing  
increment $i: [IO] awk '{i=i+1;print i}' 

increment $i: [NN] i=$(($i+1)) 

increment $i: [NN] i=$[$i+1] 

increment $i: [NN] let i=$i+1 

preincrement $i: [IO] awk '{++i;print i}' 

preincrement $i: [NN] i=$((++i)) 

postincrement $i: [IO] awk '{i++;print i}' 

decrement $i: [IO] awk '{i=i-1;print i}' 

decrement $i: [NN] i=$(($i-1)) 

decrement $i: [NN] i=$[$i-1] 



High Performance Linux Shell Programming Reference 

105 

Desired Action  Command Line 
decrement $i: [NN] let i=$i-1 

predecrement $i: [IO] awk '{--i;print i}' 

predecrement $i: [NN] i=$((--i)) 

postdecrement $i: [IO] awk '{i--;print i}' 

  

Truncating or rounding decimal 
numbers to an integer 

 

truncate field1 to an integer: [IO] awk '{print int($1)}' 

truncate field1 to an integer: [IO] awk '{printf "%d\n",$1}' 

round field1 to the closer integer: [IO] awk '($1-int($1))>=0.5 {print 
int($1+.5);next} {print int($1)}' 

truncate variable $x to an integer: [NN] x=`awk -v x=$x 'BEGIN {print int(x)}'` 

truncate variable $x to an integer: [NN] x=`awk -v x=$x 'BEGIN  
{printf "%d\n",x}'` 

truncate variable $x to an integer: [NN] x=`echo $x | cut -d. -f1` 
Note: this does not handle 0.xxx or exponential numbers

truncate variable $x to an integer: [NN] x=`echo $x | sed '/\..*$//'` 
Note: this does not handle 0.xxx or exponential numbers 

truncate variable $x to an integer: [NN] x=`echo $x | sed '/\.[0-9]*$//'` 
Note: this does not handle 0.xxx or exponential numbers 

round variable $x to the closer integer: 
[NN] 

x=`awk -v x=$x 'BEGIN  
{if (x-int(x)>=0.5){print int(x+.5)}  
else{print int(x)}}'` 

  

Absolute values  

show the absolute value of field1: [IO] awk '$1 < 0 {print $1*-1; next}  
{print $1}' 

show every field after converting field2 
to its absolute value: [IO] 

awk '$2 < 0 {$2=-$2; print $0; next} 
{print $0}' 

show the absolute value of every field: 
[IO] 

awk '{for (f=1;f<=NF;f++) 
if ($f<0) $f=-$f; print $0}' 

put the absolute value of variable "$a" 
into variable "x": [NN] 

x=`awk -v a=$a \ 
'BEGIN {if (a<0) a=-a; print a}'` 

  

Calculating with numbers in bases 
other than base 10  

show in base 10 the product of base 2 
values in field1 and field2: [IO] 

awk 'NR==1{print "ibase=2"} 
{print $1"*"$2}'|bc 

put the product of base 2 numbers $a and 
$b into base 10 variable "x": [NN] 

x=`echo "ibase=2;$a*$b"|bc` 

show in base 2 the product of base 10 
values in field1 and field2: [IO] 

awk 'NR==1{print "obase=2"} 
{print $1"*"$2}'|bc 

put the product of base 10 numbers $a 
and $b into base 2 variable "x": [NN] 

x=`echo "obase=2;$a*$b"|bc` 

show in base 2 the product of base 2 
values in field1 and field2: [IO] 

awk 'NR==1{print "ibase=2"}{print 
$1"*"$2}'|bc|awk 'NR==1 
{print "obase=2"}{print $1}'|bc 



E. J. Smeltz  

106 

Desired Action  Command Line 
put the product of base 2 numbers $a and 
$b into base 2 variable "x": [NN] 

x=`echo "ibase=2;$a*$b"|bc| 
awk '{print "obase=2;"$1}'|bc` 

  

show in base 10 the sum of base 8 values 
in field1 and field2: [IO] 

awk 'NR==1{print "ibase=8"} 
{print $1"+"$2}'|bc 

put the sum of base 8 numbers $a and $b 
into base 10 variable "x": [NN] 

x=`echo "ibase=8;$a+$b"|bc` 

show in base 8 the sum of base 10 values 
in field1 and field2: [IO] 

awk 'NR==1{print "obase=8"} 
{print $1"+"$2}'|bc 

put the sum of base 10 numbers $a and 
$b into base 8 variable "x": [NN] 

x=`echo "obase=8;$a+$b"|bc` 

show in base 8 the sum of base 8 values 
in field1 and field2: [IO] 

awk 'NR==1{print "ibase=8"} 
{print $1"+"$2}'|bc|awk 'NR==1 
{print "obase=8"}{print $1}'|bc 

put the sum of base 8 numbers $a and $b 
into base 8 variable "x": [NN] 

x=`echo "ibase=8;$a+$b"|bc| 
awk '{print "obase=8;"$1}'|bc` 

  

show in base 10 the difference of base 16 
values in field1 and field2: [IO] 

awk 'NR==1{print "ibase=16"} 
{print $1"-"$2}'|bc 

put the difference of base 16 numbers $a 
and $b into base 10 variable "x": [NN] 

x=`echo "ibase=16;$a-$b"|bc` 

show in base 16 the difference of base 10 
values in field1 and field2: [IO] 

awk 'NR==1{print "obase=16"} 
{print $1"-"$2}'|bc 

put the difference of base 10 numbers $a 
and $b into base 16 variable "x": [NN] 

x=`echo "obase=16;$a-$b"|bc` 

show in base 16 the difference of base 16 
values in field1 and field2: [IO] 

awk 'NR==1{print "ibase=16"} 
{print $1"-"$2}'|bc|awk 'NR==1 
{print "obase=16"}{print $1}'|bc 

put the difference of base 16 numbers $a 
and $b into base 16 variable "x": [NN] 

x=`echo "ibase=16;$a-$b"|bc| 
awk '{print "obase=16;"$1}'|bc` 

  

Floating-point addition, subtraction, 
multiplication, division 

 

show the sum of field1 and field2: [IO] awk '{print ($1+$2)}' 

put the sum of $a and $b into variable 
"x": [NN] 

x=`echo "scale=5;$a+$b"|bc` 

put the sum of $a and $b into variable 
"x": [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {print (a+b)}'` 

put the sum of $a and $b into variable 
"x": [NN] 

x=`echo "$a $b"|awk '{print ($1+$2)}'` 

put the sum of $a and $b into variable 
"x": [NN] 

x=`echo "$a $b + p"|dc` 

show the difference of field1 and field2: 
[IO] 

awk '{print ($1-$2)}' 



High Performance Linux Shell Programming Reference 

107 

Desired Action  Command Line 
put the difference of $a and $b into 
variable "x": [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {print (a-b)}'` 

put the difference of $a and $b into 
variable "x": [NN] 

x=`echo "scale=5;$a-$b"|bc` 

put the difference of $a and $b into 
variable "x": [NN] 

x=`echo "$a $b - p"|dc` 

show the product of field1 and field2: 
[IO] 

awk '{print ($1*$2)}' 

put the product of $a and $b into variable 
"x": [NN] 

x=`awk -v a=$a -v b=$b \ 
'BEGIN {print (a*b)}'` 

put the product of $a and $b into variable 
"x": [NN] 

x=`echo "scale=5;$a*$b"|bc` 

put the product of $a and $b into variable 
"x": [NN] 

x=`echo "$a $b * p"|dc` 

show field1 divided by field2: [IO] awk '{print ($1/$2)}' 

put the result of $a divided by $b into 
variable "x": [NN] 

x=`awk -v a=$a -v b=$b \ 
'BEGIN {print (a/b)}'` 

put the result of $a divided by $b into 
variable "x": [NN] 

x=`echo "scale=5;$a/$b"|bc` 

  

Powers of n  

show field1 raised to the power of field2: 
[IO] 

awk '{print ($1**$2)}' 

show field1 raised to the power of field2: 
[IO] 

awk '{print ($1^$2)}' 

put the result of $a raised to the power of 
$b into variable "x": [NN] 

x=`awk -v a=$a -v b=$b \ 
'BEGIN {print (a^b)}'` 

put the result of $a raised to the power of 
$b into variable "x": [NN] 

x=`echo "scale=5;$a^$b"|bc` 

put the result of $a raised to the power of 
$b into variable "x": [NN] 

x=$(($a**$b)) 

put the result of $a raised to the power of 
$b into variable "x": [NN] 

x=$[$a**$b] 

  

Square roots  

show the square root of field1: [IO] awk '{print sqrt($1)}' 

put the square root of $a into variable 
"x": [NN] 

x=`awk -v a=$a 'BEGIN {print sqrt(a)}'` 

put the square root of $a into variable 
"x": [NN] 

x=`echo "scale=5;sqrt($a)"|bc` 

  

Calculating the value of e, natural logs 
and powers of e 

In my testing, bc correctly calculated e to beyond 200 digits. 
But awk was accurate to 14 digits. Verify how your system 
behaves.

show the value of e: [NO] awk 'BEGIN{print exp(1)' 



E. J. Smeltz  

108 

Desired Action  Command Line 
show the value of e: [NO] echo "e(1)"|bc -l 

show the value of e to 14 digits: [NO] awk 'BEGIN{printf "%.14f\n",exp(1)}' 

show the value of e to 14 digits: [NO] echo "scale=14;e(1)"|bc -l 

show the value of e to 200 digits: [NO] echo "scale=200;e(1)"|bc -l 

show the natural log of field1: [IO] awk '{print log($1)}' 

show the natural log of field1 to 40 
digits: [IO] 

awk 'NR<2{print "scale=40"} 
{print "l("$1")"}'|bc -l 

put the natural log of $a into variable 
"x": [NN] 

x=`awk -v a=$a 'BEGIN {print log(a)}'` 

put the natural log of $a into variable 
"x": [NN] 

x=`echo "scale=5;l($a)"|bc -l` 

show e ^ field1: [IO] awk '{print exp($1)}' 

show e ^ field1 to 40 digits: [IO] awk 'NR<2{print "scale=40"} 
{print "e("$1")"}'|bc -l 

put e ^ $a into variable "x": [NN] x=`awk -v a=$a 'BEGIN {print exp(a)}'` 

put e ^ $a into variable "x": [NN] x=`echo "scale=5;e($a)"|bc -l` 

  

Bessel functions  

show the Bessel function of integer order 
field1 of field2: [IO] 

awk 'NR==1{print "scale=5"} 
{"j("$1","$2")"}' | bc -l 

put the Bessel function of integer order 
$a of $b into variable "x": [NN] 

x=`echo"scale=5;j($a,$b)"|bc -l` 

  

Calculating the value of pi 
Note: if you require the value of pi to an extended 
number of decimal places, look up the value and 
hard-code it into the script. Then verify that your 
chosen math operators can provide the correct 
answer based on that many digits of precision. 

Note: just because you tell something to compute the value of 
pi to so many digits does not mean those computed digits will 
be accurate. In my testing, awk was accurate to 14 digits, but 
bc was accurate to 37. Verify how your computer behaves. 

show the value of pi: [NO] awk 'BEGIN {print atan2(0,-1)}' 

show the value of pi: [NO] awk 'BEGIN {print (4*atan2(1,1))}' 

show the value of pi to 14 digits: [NO] awk 'BEGIN { 
printf "%.14f\n",atan2(0,-1)}' 

show the value of pi to 14 digits: [NO] awk 'BEGIN { 
printf "%.14f\n",(4*atan2(1,1))}' 

show the value of pi to 14 digits: [NO] echo "scale=14;4*a(1)"|bc -l 

show the value of pi to 37 digits: [NO] echo "scale=37;4*a(1)"|bc -l 

put the value of pi to 10 digits into the 
variable "pi": [NN] 

pi=$(echo "scale=10;4*a(1)"|bc -l) 

put the value of pi to 10 digits into the 
variable "pi": [NN] 

pi=$(awk 'BEGIN { 
printf "%.10f\n",atan2(0,-1)}') 

put the value of pi to 10 digits into the 
variable "pi": [NN] 

pi=$(awk 'BEGIN { 
printf "%.10f\n",(4*atan2(1,1))}') 

put the value of pi to 10 digits into the 
variable "pi": [NN] 

pi=$(awk 'BEGIN { 
print "scale=10;4*a(1)"|"bc -l"}) 



High Performance Linux Shell Programming Reference 

109 

Desired Action  Command Line 
put the value of pi to 37 digits into the 
variable "pi": [NN] 

pi=$(echo "scale=37;4*a(1)"|bc -l) 

  

Converting between degrees and 
radians 

 

convert degrees in field1 to radians to 10 
digits: [IO] 

awk '{printf "%.10f\n",\ 
($1/45*atan2(1,1))}' 

convert degrees in field1 to radians to 10 
digits: [IO] 

awk 'NR==1{print "scale=10"} 
{print $1"/45*a(1)"}' | bc -l 

convert radians in field1 to degrees to 10 
digits: [IO] 

awk '{printf "%.10f\n",\ 
($1*45/atan2(1,1))}' 

convert radians in field1 to degrees to 10 
digits: [IO] 

awk 'NR==1{print "scale=10"} 
{print $1"*45*a(1)"}' | bc -l 

put the number of degrees per radian to 
10 digits into the variable "dpr": [NN] 

dpr=`echo "scale=10;45/a(1)"|bc -l` 

put the number of radians per degree to 
10 digits into the variable "rpd": [NN] 

rpd=`echo "scale=10;a(1)/45"|bc -l` 

  

Outputting integer values  

show the integer value of field1 / field2: 
[IO] 

awk '{printf "%d\n", $1/$2}' 

show the integer value of field1 / field2 
(global format affects all numbers 
output): [IO] 

awk 'BEGIN {OFMT="%d"} 
{print $1/$2}' 

put the integer value of $a / $b into the 
variable "x": [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {printf "%d\n", a/b}'` 

  

Outputting in floating-point format  

put the value of $a / $b to 5 digits into 
the variable "x": [NN] 

x=`echo "scale=5;$a/$b"|bc` 

put the value of $a / $b to 20 digits into 
the variable "x": [NN] 

x=`echo "scale=20;$a/$b"|bc` 

show the value of field1 / field2 to 5 
digits: [IO] 

awk '{printf "%.5f\n", $1/$2}' 

show the value of field1 / field2 to 5 
digits (global format affects all numbers 
output): [IO] 

awk 'BEGIN {OFMT="%.5f"} 
{print $1/$2}' 

put the value of $a / $b to 5 digits into 
the variable "x": [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {printf "%.5f\n", a/b}'` 

put the value of $a / $b to 5 digits into 
the variable "x": [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {OFMT="%.5f"} {print a/b}'` 

  

Outputting in exponential notation  



E. J. Smeltz  

110 

Desired Action  Command Line 
show the value of field1 / field2 to 5 
digits in exponential notation: [IO] 

awk '{printf "%.5e\n", $1/$2}' 

show the value of field1 / field2 to 5 
digits in exponential notation (global 
format affects all numbers output): [IO] 

awk 'BEGIN {OFMT="%.5e"} 
{print $1/$2}' 

put the value of $a / $b to 5 digits in 
exponential notation into the variable 
"x": [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {printf "%.5e\n", a/b}'` 

  

Outputting in exponential or floating-
point (auto-choose)  

show the value of field1 / field2 to 5 
digits in exponential or floating-point 
notation: [IO] 

awk '{printf "%.5g\n", $1/$2}' 

show the value of field1 / field2 to 5 
digits in exponential or floating-point 
notation (global format affects all 
numbers output): [IO] 

awk 'BEGIN {OFMT="%.5g} 
{print $1/$2}' 

put the value of $a / $b to 5 digits in 
exponential or floating-point notation 
into the variable "x": [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {printf "%.5g\n", a/b}'` 

  

Trigonometric functions: sin, cos, sec, 
csc, tan, cot 

 

show the sine of field1 (input value is in 
degrees): [IO] 

awk '{print sin($1/45*atan2(1,1))}' 

show the sine of field1 (input value is in 
radians): [IO] 

awk '{print sin($1)}' 

show the sine of field1 (input value is in 
radians): [IO] 

awk 'NR==1{print "scale=5"} 
{print "s("$1")"}'|bc -l 

put the sine of $a into variable 'x' (input 
value is in radians): [NN] 

x=`awk -v a=$a 'BEGIN {print sin(a)}'` 

put the sine of $a into variable 'x' (input 
value is in radians): [NN] 

x=`echo "scale=5;s($a)"|bc -l` 

show the cosine of field1 (input value is 
in degrees): [IO] 

awk '{print cos($1/45*atan2(1,1))}' 

show the cosine of field1 (input value is 
in radians): [IO] 

awk '{print cos($1)}' 

show the cosine of field1 (input value is 
in radians): [IO] 

awk 'NR==1{print "scale=5"} 
{print "c("$1")"}'|bc -l 

put the cosine of $a into variable "x" 
(input value is in radians): [NN] 

x=`awk -v a=$a 'BEGIN {print cos(a)}'` 

put the cosine of $a into variable "x" 
(input value is in radians): [NN] 

x=`echo "scale=5;c($a)"|bc -l` 



High Performance Linux Shell Programming Reference 

111 

Desired Action  Command Line 
show the secant of field1 (input value is 
in degrees): [IO] 

awk '{print 1/cos($1/45*atan2(1,1))}' 

show the secant of field1 (input value is 
in radians): [IO] 

awk '{print 1/cos($1)}' 

show the cosecant of field1 (input value 
is in degrees): [IO] 

awk '{print 1/sin($1/45*atan2(1,1))}' 

show the cosecant of field1 (input value 
is in radians): [IO] 

awk '{print 1/sin($1)}' 

show the tangent of field1 (input value is 
in radians): [IO] 

awk '{print (sin($1)/cos($1))}' 

put the tangent of $a into variable "x" 
(input value is in radians): [NN] 

x=`echo "scale=5;s($a)/c($a)"|bc -l` 

show the cotangent of field1 (input value 
is in radians): [IO] 

awk '{print 1/((sin($1)/cos($1)))}' 

  

Trigonometric functions: arcsin, 
arccos, arctan, arccot  

show the arcsine of field1 (output value 
is in radians): [IO] 

awk '{print atan2($1,sqrt(1-$1^2))}' 

show the arccosine of field1 (output 
value is in radians): [IO] 

awk '{print atan2(sqrt(1-$1^2),$1)}' 

show the arctangent of field1 / field2 
(output value is in radians): [IO] 

awk '{print atan2($1,$2)}' 

show the arctangent of field1 (output 
value is in radians): [IO] 

awk 'NR==1{print "scale=5"} 
{print "a("$1")"}'|bc -l 

put the arctangent of $a / $b into variable 
"x" (output value is in radians): [NN] 

x=`awk -v a=$a -v b=$b  
'BEGIN {print atan2(a,b)}'` 

put the arctangent of $a into variable "x" 
(output value is in radians): [NN] 

x=`echo "scale=5;a($a)"|bc -l` 

show the arccotangent of field1 (output 
value is in radians): [IO] 

awk '{print (atan2(0,-1)/2)-atan2($1,1)}' 

  

Hyperbolic functions: sinh, cosh, sech, 
csch, tanh, coth  

show the hyperbolic sine of field1 (input 
value is in radians): [IO] 

awk '{print (exp($1)-exp(-$1))/2}' 

put the hyperbolic sine of $a into variable 
'x' (input value is in radians): [NN] 

x=$(echo "scale=5;(e($a)-e(-$a))/2"| 
bc -l) 

show the hyperbolic cosine of field1 
(input value is in radians): [IO] 

awk '{print (exp($1)+exp(-$1))/2}' 

put the hyperbolic cosine of $a into 
variable 'x' (input value is in radians): 
[NN] 

x=$(echo "scale=5;(e($a)+e(-$a))/2"| 
bc -l) 

  



E. J. Smeltz  

112 

Desired Action  Command Line 
show the hyperbolic secant of field1 
(input value is in radians): [IO] 

awk '{print 2/(exp($1)+exp(-$1))}' 

put the hyperbolic secant of $a into 
variable 'x' (input value is in radians): 
[NN] 

x=`echo "scale=5;2/(e($a)+e(-$a))"|bc -l` 

show the hyperbolic cosecant of field1 
(input value is in radians): [IO] 

awk '{print 2/(exp($1)-exp(-$1))}' 

put the hyperbolic cosecant of $a into 
variable 'x' (input value is in radians): 
[NN] 

x=`echo "scale=5;2/(e($a)-e(-$a))"|bc -l` 

  

show the hyperbolic tangent of field1 
(input value is in radians): [IO] 

awk '{print (exp($1)-exp(-$1))/ 
(exp($1)+exp(-$1))}' 
Note: type the above on one line.

put the hyperbolic tangent of $a into 
variable 'x' (input value is in radians): 
[NN] 

x=$(echo "scale=5;(e($a)-e(-$a))/ 
(e($a)+e(-$a))" | bc -l) 
Note: type the above on one line. 

show the hyperbolic cotangent of field1 
(input value is in radians): [IO] 

awk '{print (exp($1)+exp(-$1))/ 
(exp($1)-exp(-$1))}' 
Note: type the above on one line.

put the hyperbolic cotangent of $a into 
variable 'x' (input value is in radians): 
[NN] 

x=$(echo "scale=5;(e($a)+e(-$a))/ 
(e($a)-e(-$a))" | bc -l) 
Note: type the above on one line. 

  

Hyperbolic functions: arcsinh, 
arccosh, arctanh  

show the hyperbolic arcsine of field1 
(output value is in radians): [IO] 

awk '{print log($1+sqrt($1*$1+1))}' 

show the hyperbolic arccosine of field1 
(output value is in radians): [IO] 

awk '{print log($1+sqrt($1*$1-1))}' 

show the hyperbolic arctangent of field1 
(output value is in radians): [IO] 

awk '{print log((1+$1)/(1-$1))/2}' 

put the hyperbolic arctangent of $a into 
variable 'x' (output value is in radians): 
[NN] 

x=$(echo "scale=5;l((1+$a)/(1-$a))/2"| 
bc -l) 

  

Prime factors  

show the prime factors of 5463: [NN] factor 5463 

show the prime factors of $g: [NN] factor $g 

show the prime factors of the numbers 
contained in file1: [NO] 

cat file1 | factor 

list prime numbers contained in file1: 
[NO] 

cat file1 | factor |  
awk 'NF <= 2 {print $2}' 

list non-prime numbers contained in file1 
along with their prime factors: [NO] 

cat file1 | factor |  
awk 'NF >= 2 {print $0}' 



High Performance Linux Shell Programming Reference 

113 

Desired Action  Command Line 
show the prime factors of numbers from 
1 to 1000: [NO] 

awk 'BEGIN {for (i=1;i<=1000;i++)  
print i}' | factor 

show the prime factors of numbers from 
1 to field1: [NO] 

awk '{for (i=1;i<=$1;i++) print i}'| 
factor 

show the prime factors of numbers from 
field1 to field2: [IO] 

awk '{for (i=$1;i<=$2;i++) print i}'| 
factor 

show the prime factors of numbers from 
1 to 'n': [NO] 

awk -v n=$n 'BEGIN {for (i=1;i<=n;i++) 
print i}' | factor  

show the prime factors of numbers from 
'm' to 'n': [NO] 

awk -v m=$m -v n=$n 'BEGIN {for 
(i=m;i<=n;i++) print i}' | factor  

  

Non-prime numbers  

show non-prime numbers and their prime 
factors from 1 to 1000: [NO] 

seq 1000 | factor | 
awk 'NF >= 2 {print $0}' 

show non-prime numbers and their prime 
factors from 1 to 1000: [NO] 

awk 'BEGIN {for (i=1;i<=1000;i++)  
print i}' | factor | 
awk 'NF >= 2 {print $0}' 

show non-prime numbers and their prime 
factors: [NO] 
Note: this lists without bound. 

awk 'BEGIN {for (i=1;i>0;i++)  
print i}' | factor | 
awk 'NF >= 2 {print $0}' 

  

Prime numbers  

show prime numbers from 1 to 1000: 
[NO] 

seq 1000 | factor | 
awk 'NF <= 2 {print $2}' 

show prime numbers from 1 to 1000: 
[NO] 

awk 'BEGIN {for (i=1;i<=1000;i++)  
print i}' | factor | 
awk 'NF <= 2 {print $2}' 

show prime numbers: [NO] 
Note: this lists without bound. 

awk 'BEGIN {for (i=1;i>0;i++)  
print i}' | factor | 
awk 'NF <= 2 {print $2}' 

show the first 10 prime numbers just 
above 10000: [NO] 

awk 'BEGIN {for (i=10000;i>1;i++)  
print i}' | factor | 
awk 'NF <= 2 {print $2}' | head -10 

show the prime numbers between 10000 
and 12000: [NO] 

awk 'BEGIN {for (i=10000;i<=12000;i++)  
print i}' | factor | 
awk 'NF <= 2 {print $2}' 

show the first 10 prime numbers just 
below 10000: [NO] 

awk 'BEGIN {for (i=10000;i>1;i--)  
print i}' | factor | 
awk 'NF <= 2 {print $2}' | head -10 

show prime twins from 1 to 1000: [NO] 

awk 'BEGIN {for (i=1;i<=1000;i++)  
print i}'| factor |  
awk 'NF <= 2 {print $2}'|awk 'NR<2{next} 
$1==twin{print last" "twin} 
{last=$1;twin=last+2;next}' 

show prime twins: [NO] 
Note: this lists without bound. 

awk 'BEGIN {for (i=1;i>0;i++) print i}'| 
factor | awk 'NF <= 2 {print $2}'|  
awk 'NR<2{next} 
$1==twin{print last" "twin} 
{last=$1;twin=last+2;next}' 



E. J. Smeltz  

114 

Desired Action  Command Line 
show large primes (100 hex characters 
long) in hexadecimal: [NO] 
Note: this lists without bound. 

cat /dev/urandom | od -v -An -tx4 |  
tr -d ' \t\n'|fold -w 100|  
grep -v "[02468ace]$"|grep -v "^0"| 
while read n;do openssl prime -hex $n|\ 
grep "is prime"|cut -d' ' -f1;done 

show large primes (100 hex characters 
long) in decimal: [NO] 
Note: this lists without bound. 

cat /dev/urandom | od -v -An -tx4 |  
tr -d ' \t\n'|fold -w 100| 
grep -v "[02468ace]$"|grep -v "^0"| 
while read n;do openssl prime -hex $n|\ 
grep "is prime"|cut -d' ' -f1|\ 
sed "s/^/ibase=16;/"|bc;done 

show large primes (200 hex characters 
long) in hexadecimal: [NO] 
Note: this lists without bound. 

cat /dev/urandom | od -v -An -tx4 |  
tr -d ' \t\n'|fold -w 200| 
grep -v "[02468ace]$"|grep -v "^0"| 
while read n;do openssl prime -hex $n|\ 
grep "is prime"|cut -d' ' -f1;done 

show large primes (200 hex characters 
long) in decimal: [NO] 
Note: this lists without bound. 

cat /dev/urandom | od -v -An -tx4 |  
tr -d ' \t\n'|fold -w 200| 
grep -v "[02468ace]$"|grep -v "^0"| 
while read n;do openssl prime -hex $n|\ 
grep "is prime"|cut -d' ' -f1|\ 
sed "s/^/ibase=16;/"|bc;done 

  

Factorials  

show the factorial of field1: [IO] awk 'BEGIN{f=1} {for(i=1;i<=$1;i++)  
f=+f*i} END {print f}' 

show the factorial of field2: [IO] awk 'BEGIN{f=1} {for(i=1;i<=$2;i++)  
f=+f*i} END {print f}' 

show the factorial of the value in variable 
'n': [NO] 

awk -v n=$n 'BEGIN 
{{f=1;for(i=1;i<=n;i++) f=+f*i} 
{print f}}' 

  

Number sequences (arithmetic and 
geometric)  

generate the first 10 triangular numbers 
(one number per line): [NO] 

awk 'BEGIN {for (i=1;i<=10;i++)  
{t=i+t; print t}}' 

generate the first 10 triangular numbers 
(comma delimited): [NO] 

awk 'BEGIN {for (i=1;i<=10;i++)  
{t=i+t; printf "%d,",t}}'|sed 's/,$/\n/' 

generate the first 25 triangular numbers 
(one number per line): [NO] 

awk 'BEGIN {for (i=1;i<=25;i++)  
{t=i+t; print t}}' 

generate the first field1 triangular 
numbers (one number per line): [IO] 

awk '{for (i=1;i<=$1;i++)  
{t=i+t; print t}}' 

generate the first field1 triangular 
numbers (comma delimited): [IO] 

awk '{for (i=1;i<=$1;i++)  
{t=i+t; printf "%d,",t}}'|sed 's/,$/\n/' 

generate the first 10 Fibonacci numbers 
(one number per line): [NO] 

awk 'BEGIN {t=0; b=1;  
for (i=1;i<=10;i++)  
{print t; p=t; t=t+b; b=p}}'  

generate the first 35 Fibonacci numbers 
(one number per line): [NO] 

awk 'BEGIN {t=0; b=1; 
for (i=1;i<=35;i++) 
{print t; p=t; t=t+b; b=p}}' 



High Performance Linux Shell Programming Reference 

115 

Desired Action  Command Line 
generate the first field1 Fibonacci 
numbers (one number per line): [IO] 

awk '{t=0; b=1; for (i=1;i<=$1;i++) 
{print t; p=t; t=t+b; b=p}}' 

generate the first 10 elements of an 
arithmetic progression starting at 4 with 
an increment of 6 (one number per line): 
[NO] 

awk 'BEGIN {o=t=4; inc=6; 
for (i=1;i<=10;i++) 
{print t; t=o+(inc*i)}}' 

generate the first field1 elements of an 
arithmetic progression starting at field2 
with an increment of field3 (one number 
per line): [IO] 

awk '{o=t=$2; inc=$3;  
for (i=1;i<=$1;i++)  
{print t; t=o+(inc*i)}}' 

generate the first 10 elements of a 
geometric progression starting at 4 with a 
common ratio of 6 (one number per line): 
[NO] 

awk 'BEGIN {o=t=4; ratio=6;  
for (i=1;i<=10;i++)  
{print t; t=o*(ratio*i)}}' 

generate the first field1 elements of a 
geometric progression starting at field2 
with a common ratio of field3 (one 
number per line): [IO] 

awk '{o=t=$2; ratio=$3;  
for (i=1;i<=$1;i++)  
{print t; t=o*(ratio*i)}}' 

  

Calculating network settings 
Note: see the man page for ipcalc limitations 

Note: this is a calculator for subnet settings just as bc is a 
calculator for general math functions. The host (-h) option uses 
the local resolver to try to find a host name for that IP. 

show all network settings for a NIC that 
would be set for 1.2.3.4/8: [NO] 

ipcalc -bhmnp  1.2.3.4/8 

show all network settings for a NIC that 
would be set for 1.2.3.4 255.0.0.0: [NO] 

ipcalc -bhmnp  1.2.3.4 255.0.0.0 

show broadcast address for a NIC that 
would be set for 1.2.3.4/8: [NO] 

ipcalc -b  1.2.3.4/8 

show host name for a NIC that would be 
set for 1.2.3.4/8: [NO] 

ipcalc -h  1.2.3.4/8 

show subnet mask for a NIC that would 
be set for 1.2.3.4/8: [NO] 

ipcalc -m  1.2.3.4/8 

show network for a NIC that would be 
set for 1.2.3.4/8: [NO] 

ipcalc -n  1.2.3.4/8 

show subnet prefix for a NIC that would 
be set for 1.2.3.4/8: [NO] 

ipcalc -p  1.2.3.4/8 

show subnet prefix for a NIC that would 
be set for 1.2.3.4 255.0.0.0: [NO] 

ipcalc -p  1.2.3.4 255.0.0.0 

  

Calculating times, dates, durations, 
calendars 

 

show the number of seconds to execute a 
command (bash internal): [NO] 

time command 

show the number of seconds to execute a 
command (external): [NO] 

/usr/bin/time command 



E. J. Smeltz  

116 

Desired Action  Command Line 
show the number of seconds from 
January 1, 1970 00:00:00 to now: [NO] 

date +%s 

show the number of seconds from 
January 1, 1970 00:00:00 to some 
arbitrary timestamp: [NO] 

date -d "hhmm CCYYMMDD" +%s 
Note: hh=hours, mm=minutes, CC=century, YY=year, 
MM=month, DD=day. Example: July 5, 2008 4:22pm would 
be "1622 20080705" 

show the number of seconds from 
January 1, 1970 00:00:00 to some 
arbitrary day: [NO] 

date -d "CCYYMMDD" +%s 
Note: CC=century, YY=year, MM=month, DD=day. Example: 
July 5, 2008 would be "20080705" 

show the number of seconds from July 5, 
2008 4:22pm to July 20, 2013 7:51pm: 
[NO] 

echo "$(date -d "1951 20130720" +%s) \ 
- $(date -d "1622 20080705" +%s)" | bc 

show the number of minutes from July 5, 
2008 4:22pm to July 20, 2013 7:51pm: 
[NO] 

echo "scale=6;($(date -d "1951 \ 
20130720" +%s) - $(date -d "1622 \ 
20080705" +%s))/60" | bc 

show the number of hours from July 5, 
2008 4:22pm to July 20, 2013 7:51pm: 
[NO] 

echo "scale=6;($(date -d "1951 \ 
20130720" +%s) - $(date -d "1622 \ 
20080705" +%s))/3600" | bc 

show the number of days from July 5, 
2008 4:22pm to July 20, 2013 7:51pm: 
[NO] 

echo "scale=6;($(date -d "1951 \ 
20130720" +%s) - $(date -d "1622 \ 
20080705" +%s))/86400" | bc 

show the number of weeks from July 5, 
2008 4:22pm to July 20, 2013 7:51pm: 
[NO] 

echo "scale=6;($(date -d "1951 \ 
20130720" +%s) - $(date -d "1622 \ 
20080705" +%s))/604800" | bc 

show the number of the second of the 
minute (00-59): [NO] 

date +%S 

show the number of the minute of the 
hour (00-59): [NO] 

date +%M 

show the number of the hour of the day 
(00-23): [NO] 

date +%H 

show the number of the hour of the day 
(0-23): [NO] 

date +%k 

show the number of the day of the week 
(1-7=Mon-Sun): [NO] 

date +%u 

show the abbreviated name of the day of 
the week (Mon): [NO] 

date +%a 

show the abbreviated name of the day of 
the week of an arbitrary date: [NO] 

date -d "CCYYMMDD" +%a 
Note: CC=century, YY=year, MM=month, DD=day. Example: 
July 5, 2008 would be "20080705" 

show the full name of the day of the 
week (Monday): [NO] 

date +%A 

show the number of the day of the month 
(01-31): [NO] 

date +%d 

show the number of the day of the year 
(001-366): [NO] 

date +%j 



High Performance Linux Shell Programming Reference 

117 

Desired Action  Command Line 
show the number of the month of the 
year (01-12): [NO] 

date +%m 

show the abbreviated name of the day of 
the month (Jan): [NO] 

date +%b 

show the full name of the day of the 
month (January): [NO] 

date +%B 

show the year in yy format (00-99): [NO] date +%y 

show the century in cc format (00-99): 
[NO] 

date +%C 

show the year in yyyy format: [NO] date +%Y 

show AM or PM in uppercase: [NO] date +%p 

show am or pm in lowercase: [NO] date +%P 

show the current UTC time: [NO] date -u 

show the date in Month Day, Year 
format: [NO] 

date "+%B %d, %Y" 

show today's date in  
yyyy-mm-dd format: [NO] 

date +%Y-%m-%d 

show yesterday's date in  
yyyy-mm-dd format: [NO] 

date -d "yesterday" +%Y-%m-%d 

show tomorrow's date in  
yyyy-mm-dd format: [NO] 

date -d "tomorrow" +%Y-%m-%d 

show the time 30 seconds ago in 
hh:mm:ss format: [NO] 

date -d "now -30 second" +%H:%M:%S 

show the time 30 seconds from now in 
hh:mm:ss format: [NO] 

date -d "now +30 second" +%H:%M:%S 

show the time a minute ago in hh:mm:ss 
format: [NO] 

date -d "now -1 minute" +%H:%M:%S 

show the time a minute from now in 
hh:mm:ss format: [NO] 

date -d "now +1 minute" +%H:%M:%S 

show the time an hour ago in hh:mm 
format: [NO] 

date -d "now -1 hour" +%H:%M 

show the time an hour from now in 
hh:mm format: [NO] 

date -d "now +1 hour" +%H:%M 

show the time two hours ago in hh:mm 
format: [NO] 

date -d "now -2 hour" +%H:%M 

show the time two hours ago in hh:mm 
format: [NO] 

date -d "now +2 hour" +%H:%M 

show the time and date two days ago in 
yyyy-mm-dd-hh-mm format: [NO] 

date -d "now -2 day" +%Y-%m-%d-%H-%M 

show the date two days from now in 
yyyy-mm-dd format: [NO] 

date -d "now +2 day" +%Y-%m-%d 

show the time and date two weeks ago in 
yyyy-mm-dd-hh-mm format: [NO] 

date -d "now -2 week" +%Y-%m-%d-%H-%M 



E. J. Smeltz  

118 

Desired Action  Command Line 
show the date two weeks from now in 
yyyy-mm-dd format: [NO] 

date -d "now +2 week" +%Y-%m-%d 

show the time and date two months ago 
in yyyy-mm-dd-hh-mm format: [NO] 

date -d "now -2 month" +%Y-%m-%d-%H-%M 

show the time and date two years ago in 
yyyy-mm-dd-hh-mm format: [NO] 

date -d "now -2 year" +%Y-%m-%d-%H-%M 

show the date for last Friday in yyyy-
mm-dd format: [NO] 

date -d "last Friday" +%Y-%m-%d 

show the date for this coming Friday in 
yyyy-mm-dd format: [NO] 

date -d "this Friday" +%Y-%m-%d 

show the date for this coming Friday in 
yyyy-mm-dd format: [NO] 

date -d "next Friday" +%Y-%m-%d 

show the date a fortnight in the future in 
yyyy-mm-dd format: [NO] 

date -d "now + fortnight" +%Y-%m-%d 

show a calendar for this month, each 
week starting with the day specified by 
the locale: [NO] 

cal 

show a calendar for this month, each 
week starting with Sunday: [NO] 

cal -s 

show a calendar for this month, each 
week starting with Monday: [NO] 

cal -m 

show a calendar for last, this, and next 
month: [NO] 

cal -3 

show a calendar for this month, each day 
numbered from January 1: [NO] 

cal -j 

show a calendar for January 2008: [NO] cal 1 2008 

show a calendar for the year 2008: [NO] cal 2008 

show a calendar for the current year: 
[NO] 

cal -y 

show the date and time every second: 
[NO] 

while true; do date; sleep 1; done 

 



High Performance Linux Shell Programming Reference 

119 

The Computational Versatility of Linux Shell 
Before I researched the numeric computational abilities of certain shell commands, namely awk, bc, 
and dc, it did not seem like shell could do much in that area. Nothing could be farther from the truth, 
though. As this chapter demonstrates, a great variety of numeric calculations can be carried out from 
within a shell program. It was far more than what I could have previously imagined. Since that time, I have 
used those abilities freely, particularly in the calculating and reporting of system performance statistics.  
It was also surprising to discover the wide range of data formatting and graphing choices. Not only can 
data be cleanly formatted in a text-based report, it can be displayed in multi-colored graphs of many types 
using standard image formats. Separate chapters in this book are dedicated to discussing the formatting 
and graphing of data. 
Quite unexpected was the ability to generate arbitrarily long random hexadecimal numbers. Those could 
be fed into openssl to identify long prime numbers for cryptographic uses. For example, below is a 
routine that finds prime numbers that are 100 hexadecimal digits long. 

cat /dev/urandom | od -v -An -tx4 | tr -d ' \t\n' | fold -w 100 | 
grep -v "[02468ace]$" | grep -v "^0" | while read n ; do 
openssl prime -hex $n|grep "is prime"|cut -d' ' -f1;done 

Below is a version of the same that outputs in decimal digit form rather than hexadecimal form. 
cat /dev/urandom | od -v -An -tx4 | tr -d ' \t\n' | fold -w 100 | 
grep -v "[02468ace]$" | grep -v "^0" | while read n ; do  
openssl prime -hex $n|grep "is prime"|cut -d' ' -f1|\ 
sed "s/^/ibase=16;/"|bc;done 

The option on the fold command can be altered to vary the number of hex code digits that are sent to 
openssl for testing as a prime.  

To verify operation, I generated a number of large hex numbers, fed them into openssl, then used the 
factor command to test the numbers that openssl had said were prime. Every number was verified by 
factor as prime.  



717 

4.20  Regular Expressions 
What This Chapter Covers 

• literals and metacharacters 
• simple searches 
• case-sensitive and case-insensitive searches 
• negated searches, searching for the absence of something 
• searches relative to the beginning or the end of the line 
• searches involving characters that could be anything 
• searches involving lists of characters 
• searches involving ranges of characters 
• searches involving POSIX character class definitions 
• searches involving varying numbers of characters 
• searches involving unprintable characters 
• searches using the divide and conquer approach 
• multi-part searches performed in parallel: the "OR" function 
• multi-part searches performed in series: the "AND" function 
• handy regular expressions 

Literals and Metacharacters 
The mathematician Stephen Kleene invented the theory behind what we now know as "regular 
expressions." The term "regular expressions" or "regexes" refers to statements constructed to search for 
particular patterns in character strings. Because of their foundation in mathematics and their mathematical 
completeness, they are incredibly versatile. 
Regular expressions are composed of two kinds of characters: 

1. literals -- characters that mean exactly what they appear to mean. For example, an "A" means "A". 
2. metacharacters -- characters that have a meaning beside what they might appear to mean. For 

example, a dollar sign ($) used as a metacharacter means, "end of line." 
The backslash "\" is a metacharacter that removes the special meaning of any metacharacter that follows 
immediately behind it. Therefore, if we want to search for a dollar sign character rather than for the end of 
the line, we use "\$" to look for it. If we want to look for a backslash character, we use "\\". An expression 
that uses a backslash to remove the special meaning from a metacharacter is sometimes referred to as an 
"escape sequence." The "Metachacharacters: Characters with a Second Meaning" chapter in Section 4 
explains each metacharacter in more detail. 
We use regular expressions to find character strings of interest. The object of our search is called the 
"target string," and the expression we use in the search is called the "search expression." Ideally, we want 
to create a search expression that matches only our target string and ignores everything else. In some 
situations, that can pose a challenge. Here is an example. Suppose we have a simple log file composed of a 
single-column list of days of the week ("Monday," "Tuesday," etc.), and we want to find each reference to 
"Friday" or "Saturday". When we look for things in common with the spelling of those two days, we 
notice that each day has an "r" in it, so we might be tempted to set up a grep command like this: 



E. J. Smeltz  

718 

grep "r" 

That command is quite happy to find every "Friday" and "Saturday" for us...along with each "Thursday" 
because that day also contains an "r." Obviously, that poses a problem. Suppose we instead want to find 
only "Saturday" and "Sunday". So, we could set up a search expression like 

grep "S" 

and that works great for a while. Later on, though, we realize that sometimes we have to find "saturday" 
and "sunday" in all lower case. So we could alter the line to 

grep -i "S"  or  grep "[Ss]" 
in order to catch the days when they are all lower case. But either search expression could find more days 
than what we want because three other days of the week contain an "s" or an "S" if in all caps. Clearly, we 
have created another problem. 
Unintentional matches often occur with regular expressions. Therefore, you must take thought not only for 
what you want to match, but also for what you want to ignore. Granted, the examples above represent 
trivial errors, but such errors happen, nevertheless. 
Generally, the more thorough the search expression, the more likely you will match only what you intend 
to match. In other words, the most reliable way to find the desired target strings in this case would be to 
search for the entire name string, such as 

grep -ie "saturday" -ie "sunday" 

which ignores the case of all the characters, or 
grep -e "[Ss]aturday" -e "[Ss]unday" 

which ignores case only on the "s." The [Ss] alternative provides a more exact match. If you want an 
absolute exact match under these conditions, the search expression would be more like 

grep -e "^[Ss]aturday$" -e "^[Ss]unday$" 

which anchors the front and back of the names to the beginning and end of line. We will talk more about 
the use of anchors in search expressions shortly. 
While more thorough search expressions tend to minimize false matches, a tradeoff exists there as well. If 
our search expression is too particular, it can miss valid matches, and the string we wanted to match will 
escape detection. Let's reconsider the search expression just above. What if a space or a tab character 
somehow sneaks in after "Saturday" or Sunday" in the log file? What if the words sometimes appeared in 
all caps or all lower case? That sort of thing would cause the last two search expressions above to fail to 
match those log entries. 
What is the message in this? Our search expression is a tradeoff: it must be narrow enough in focus not to 
match non-target strings, but it must be wide enough to match the target strings over the scope of all the 
forms those target strings might take. Too narrow, and the regex will not match enough, and it will allow 
strings that should match to escape. Too wide, and more strings will match than what should match. In the 
language of regular expressions, a good regex matches the target string every time and rejects non-target 
strings every time. The best way I know to determine the quality of a regex is to run a significant amount 
of real data through it and see if it behaves as expected. Real world data has a nasty habit of containing 
unexpected surprises. In my experience, the best regular expressions come from a combination of 
thoughtful consideration and real world testing with sizable samples of the actual data the regex will be 



High Performance Linux Shell Programming Reference 

719 

required to process. Only after we observe the regex perform properly with a large quantity of real data 
will our confidence in the regex be justified. 

Although commands such as awk, grep, and sed are designed to work with regular expressions, you can 
encounter situations in which a particular regular expression will work fine with one command but not 
with other commands. For example, on my Linux desktop, the following regular expression works well to 
find numbers like "1-2-3" and "123-456-7890" when used with awk, but not with grep or with sed. 

awk '/[0-9]+-[0-9]+-[0-9]+/'        # works 

grep '[0-9]+-[0-9]+-[0-9]+'         # does not work 

sed '/[0-9]+-[0-9]+-[0-9]+/!d'      # does not work 

However, if you escape certain characters with a backslash, you can make those expressions work, as in 
grep '[0-9]\+-[0-9]\+-[0-9]\+'      # works 

sed '/[0-9]\+-[0-9]\+-[0-9]\+/!d'   # works 

You will need to use a backslash "\" to escape the following characters in grep and sed regular 
expressions:  

• plus sign "+" 
• question mark "?" 
• pipe "|" 
• left paren "(" 
• right paren ")" 

The lesson: do not assume that every regular expression will work verbatim with every command in which 
you attempt to use it. As you can see above, sometimes you need to modify regexes when going from one 
command to another. That is why equivalent one-liners in this book are often listed for multiple 
commands. I like to show how a given regular expression is used with awk, grep, and sed to demonstrate 
the modifications that are needed for each of the various commands. Once you see how a family of related 
regexes can be used in all three of those commands, you can more easily grasp how they work. Once you 
understand how they work with each command, you can swap one command for another at will and can 
thereby use the best command for each situation. Many folks have never seen how awk, grep, and sed 
can be swapped for each other in certain situations as the following pages show. That knowledge is 
important because it opens extensive possibilities. 
Although it is possible to embed unprintable characters such as various control characters in regular 
expressions, I recommend against it for maintainability reasons. If present in a script, they are easy to 
forget and do not appear on a printed listing. Commands such as awk and sed support printable versions 
of the unprintable characters you would most likely need to deal with such as \n (newline), \t (tab), and \r 
(return). Furthermore, awk supports octal and hexadecimal ASCII character designations in the forms \nnn 
(octal) and \xnn (hex). An embedded printf command could in theory enable nearly any other character 
manipulation command to work with unprintable characters. See the "Embedding Commands Within 
Commands" chapter in Section 4 for details. 



E. J. Smeltz  

720 

Simple Searches 
The following tables display three items: things we want to match, things we do not want to match, and 
search expressions to match only the target strings. Since awk, grep, and sed are the three commands 
most commonly used with regular expressions, examples for all three of those commands are provided for 
the simple searches below. 

Examples of Simple Searches 
 

Items to match Items to not match Regular expression 
strings with a lowercase 
"p" like "ample" "pear" 
"apt" 

strings lacking a lowercase 
"p" like "Pam" "lock" 
"velocity" 

p as in  
awk '/p/' 
grep 'p' 
sed '/p/!d' 

strings with an uppercase 
"J" like "Jay" "John" 
"Joey" 

strings lacking an 
uppercase "J": "joy" "pot" 
"other" 

J as in  
awk '/J/' 
grep 'J' 
sed '/J/!d' 

strings with "am" like 
"ample" "Pam" "Sam" 

strings lacking "am" like 
"AM" "aim" "velocity" 

am as in  
awk '/am/' 
grep 'am' 
sed '/am/!d' 

strings with "oc" like 
"lock" "octopus" "velocity"  

strings lacking "oc" like 
"October" "fire" "spear" 

oc as in  
awk '/oc/' 
grep 'oc' 
sed '/oc/!d' 

strings with "1/2" like 
"1/23" "71/25" "301/204"  

strings lacking "1/2" like 
"nothing" "1/4" "3/2" 

1\/2 as in  
awk '/1\/2/' 
grep '1\/2' 
sed '/1\/2/!d' 

strings with "5.3" like 
"15.3" "35.3" "95.36"  

strings lacking "5.3" like 
"5.2" "23.5" "85.7" 

5\.3 as in  
awk '/5\.3/' 
grep '5\.3' 
sed '/5\.3/!d' 

strings with "a[3" like 
"aqua[3" "terra[3" "ha[3"  

strings lacking "a[3" like 
"a3[" "bat" "b[4" 

a\[3 as in  
awk '/a\[3/' 
grep 'a\[3' 
sed '/a\[3/!d' 

strings with "r^2" like 
"A=pr^2" "rear^2" "far^2" 

strings lacking "r^2" like 
"r^3" "a^2" "r*2" 

r\^2 as in  
awk '/r\^2/' 
grep 'r\^2' 
sed '/r\^2/!d' 

strings with "$v" like 
"$var" "$v2" "$virgil" 

strings lacking "$v" like 
"v$" "$VAR" "$g" 

\$v as in  
awk '/\$v/' 
grep '\$v' 
sed '/\$v/!d' 

As you can see above, awk, grep, and sed can be used interchangeably in many string-matching 
situations. Depending on the action to be taken on the matched string, one of those three commands will 
typically be better to use than the other two. 



High Performance Linux Shell Programming Reference 

721 

Case-sensitive and Case-insensitive Searches 
Sometimes we want to match uppercase or lowercase along with the actual letters, and sometimes we do 
not care about case. Those are referred to as "case-sensitive" and case-insensitive" searches. They fall into 
three general categories: 

1. Match of letter and case for every letter 
2. Match of letter and case for only certain letters 
3. Match of letters only without regard to case 

As in the table above, examples in each case are provided for awk, grep, and sed. 

Examples of Case-sensitive and Case-insensitive Searches 
 

Items to match Items to not match Regular expression 
strings containing exact 
case matches to "Rob" like 
"Rob" "Robert" "Robbie" 

strings lacking "Rob" like 
"rob" or "robber" "Janet" 

Rob as in  
awk '/Rob/' 
grep 'Rob' 
sed '/Rob/!d'  

strings containing first 
letter upper or lower case 
matches to "Rob" or "rob" 
like "Robbie" "robber" 

strings not containing 
"Rob" or "rob" like "bob" 
"job" "crank" 

[Rr]ob as in  
awk '/[Rr]ob/' 
grep '[Rr]ob' 
sed '/[Rr]ob/!d'  

strings containing case-
insensitive matches to 
"rob" like "ROB" "rOb" 
"RoB" "roBBer" 

strings not containing the 
letters "rob" in any form 
like "bob" "job" "crank" 

[Rr][Oo][Bb] or  
rob or ROB as in  
awk'tolower($0)~/rob/' 
awk'toupper($0)~/ROB/' 
awk '/[Rr][Oo][Bb]/' 
grep -i 'rob' 
grep '[Rr][Oo][Bb]' 
sed '/[Rr][Oo][Bb]/!d' 

Negated Searches, Searching for the Absence of Something 
Matching something present in a string is useful, but so is the ability to match something not present there. 
The caret "^" gives us the ability to say "do not match the items that follow" within a set of square 
brackets.  
The table below shows how to match on the absence of various characters. Note that when looking for the 
absence of a letter as in un[^t] there still must be some letter present in place of the undesired "t". In 
other words, "sun" alone will not match un[^t] because no non-t character occurs in that word to match 
the ^t specification. On the other hand, if a space occurred after the word "sun", the un[^t] specification 
would match because it would see the space as a non-t character. 

As in the table above, examples in each case are provided for awk, grep, and sed. 



E. J. Smeltz  

722 

Examples of Negated Searches 
 

Items to match Items to not match Regular expression 
strings containing "ver" but 
not "vers" like "lever" 
"very" "vertigo" 

strings containing "vers" or 
lacking "ver" like "verse" 
"version" "berry" 

ver[^s] as in  
awk '/ver[^s]/' 
grep 'ver[^s]' 
sed '/ver[^s]/!d'  
Note: the "[^s]" spec must see a non-s 
character after the "ver" in order to match.

strings containing "un" but 
not "unt" like "unsold" 
"undo" "under"  

strings containing "unt" or 
lacking "un" like "untold" 
"until" "cranky" "sun" 

un[^t] as in  
awk '/un[^t]/' 
grep 'un[^t]' 
sed '/un[^t]/!d'  
Note: the "[^t]" spec must see a non-t 
character after the "un" in order to match.

strings ending with "day" 
but not "sday" like 
"Monday" "Friday" 
"Saturday" "Sunday" 

strings ending with "sday" 
or not ending with "day" 
like "Tuesday" 
"Wednesday" "Thursday" 

[^s]day$ as in  
awk '/[^s]day$/' 
grep '[^s]day$' 
sed '/[^s]day$/!d' 
Note: the "[^s]" spec must see a non-s 
character before the "day" in order to 
match.

strings ending with "day" 
but not "nday" or "sday" 
like "Friday" "Saturday" 
"today" 

strings ending with "nday" 
or "sday" or not ending 
with "day" like "Monday" 
"Tuesday" "Wednesday" 
"Thursday" "Sunday" 
"other" 

[^ns]day$ as in  
awk '/[^ns]day$/' 
grep '[^ns]day$' 
sed '/[^ns]day$/!d' 
Note: the "[^ns]" spec must see a non-n, 
non-s character before the "day" in order to 
match. 

strings ending with "day" 
but not "nday" or "rday" or 
"sday" like "Friday" 
"today" "someday" 

strings ending with "nday" 
or "rday" or "sday" or not 
ending with "day" like 
"Monday" "Tuesday" 
"Wednesday" "Thursday" 
"Saturday" "Sunday" 
"other" 

[^nrs]day$ as in  
awk '/[^nrs]day$/' 
grep '[^nrs]day$' 
sed '/[^nrs]day$/!d' 
Note: the "[^nrs]" spec must see a non-n, 
non-r, non-s character before the "day" in 
order to match. 

strings ending with "day" 
but not "iday" or "nday" or 
"rday" or "sday" like 
"today" "someday" 

strings ending with "iday" 
or "nday" or "rday" or 
"sday" or not ending with 
"day" like "Monday" 
"Tuesday" "Wednesday" 
"Thursday" "Friday" 
"Saturday" "Sunday" 

[^inrs]day$ as in  
awk '/[^inrs]day$/' 
grep '[^inrs]day$' 
sed '/[^inrs]day$/!d' 
Note: the "[^inrs]" spec must see a non-
i, non-n, non-r, non-s character before the 
"day" in order to match. 

strings containing "b" 
<something not "o" and not 
"z"> "t" like "bat" "bet" 
"bit" 

strings containing "bot" or 
"bzt" or something else like 
"BAT" "bta" "never" 

b[^oz]t as in  
awk '/b[^oz]t/' 
grep 'b[^oz]t' 
sed '/b[^oz]t/!d' 



High Performance Linux Shell Programming Reference 

723 

Items to match Items to not match Regular expression 
strings containing "ent" but 
not at the beginning like 
"rent" "sent" "spent" 
"denting" 

strings having "ent" at the 
beginning or not containing 
"ent" at all like "enter" 
"entry" "march" 

[^^]ent as in  
awk '/[^^]ent/' 
grep '[^^]ent' 
sed '/[^^]ent/!d' 
Note: the "[^^]" spec must see a character 
before the "ent" in order to match.

strings containing "ent" but 
not at the end of the line 
like "enter" "entry" 
"denting" 

strings having "ent" at the 
end or not containing "ent" 
at all like "rent" "sent" 
"march" 

ent[^$] as in  
awk '/ent[^$]/' 
grep 'ent[^$]' 
sed '/ent[^$]/!d' 
Note: the "[^$]" spec must see a character 
after the "ent" in order to match.

 

Searches Relative to the Beginning or the End of the Line 
Sometimes we want to match characters at the beginning or the end of a line. The technique for finding 
string patterns relative to the beginning or end of the line is called "anchoring." The anchor metacharacters 
are "^" for the beginning of the line and "$" for the end of the line. For example, if we want to find "the" at 
the beginning of the line, we would search for "^the". If we wanted to find "forever" at the end of the 
line, we would search for "forever$".  

As in the tables above, examples in each case are provided for awk, grep, and sed. 

Examples of Searches Relative to the Beginning or End of the Line 
 

Items to match Items to not match Regular expression 
empty lines, consecutive 
newlines 

lines with any character 
before the newline 

^$ as in  
awk '/^$/' 
grep '^$' 
sed '/^$/!d' 

lines composed of nothing 
but one space 

any line composed of 
something other than one 
space like "I" "at" "before" 

^ $ as in  
awk '/^ $/' 
grep '^ $' 
sed '/^ $/!d' 

lines composed of nothing 
but "3" 

any line composed of 
something other than "3" 
like "33" "587" "be" 

^3$ as in  
awk '/^3$/' 
grep '^3$' 
sed '/^3$/!d' 

lines composed of nothing 
but "this" 

any line composed of 
something other than just 
"this" like "this way" "this 
hope" "other stuff" 

^this$ as in  
awk '/^this$/' 
grep '^this$' 
sed '/^this$/!d' 

strings with "b" at the 
beginning of the line like 
"boy" "barter" "blue" 

strings lacking a "b" at the 
beginning of the line like 
"Pam" "lock" "velocity" 

^b as in  
awk '/^b/' 
grep '^b' 
sed '/^b/!d' 



E. J. Smeltz  

724 

Items to match Items to not match Regular expression 
strings with "e" at the end 
of the line like "here" 
"cleave" "be" 

strings lacking an "e" at the 
end of the line like "after" 
"broken" "plain" 

e$ as in  
awk '/e$/' 
grep 'e$' 
sed '/e$/!d' 

strings with "un" at the 
beginning of the line like 
"unto" "under" "unable" 

strings lacking a "un" at the 
beginning of the line like 
"and" "fun" "utensil" 

^un as in  
awk '/^un/' 
grep '^un' 
sed '/^un/!d' 

strings with "able" at the 
end of the line like "able" 
"table" "cable" 

strings lacking an "able" at 
the end of the line like 
"title" "label" "plain" 

able$ as in  
awk '/able$/' 
grep 'able$' 
sed '/able$/!d' 

strings with "ten" at the 
beginning of the line like 
"ten" "tent" "tenacious" 

strings lacking a "ten" at 
the beginning of the line 
like "ton" "men" "intent" 

^ten as in  
awk '/^ten/' 
grep '^ten' 
sed '/^ten/!d' 

 

Searches Involving Characters that Could be Anything 
The period "." acts as a placeholder for one character. It can be used in the place of any character you do 
not know or do not care about in your search expression. For example, if you want to search for a string 
that contains "an" but has at least one unknown character in front of it and behind it, the search expression 
would be ".an.". That would match words like "band," "sand," and "sandal." To remove the special 
meaning of the period, use the backslash as in "\.an\.". 

As in the tables above, examples in each case are provided for awk, grep, and sed. 

Examples of Searches Involving Characters that Could be Anything 
 

Items to match Items to not match Regular expression 
strings containing at least 
one initial character then 
"o" like "do" "ado" "go" 
"not" 

strings lacking a character 
followed by "o" 

.o as in  
awk '/.o/' 
grep '.o' 
sed '/.o/!d' 

strings containing "c" 
followed by exactly two 
characters, then "t" like 
"cent" "scent" "cart" 

strings lacking "c" 
<something><something> 
"t" like "cat" "carot" "gun" 

c..t as in  
awk '/c..t/' 
grep 'c..t' 
sed '/c..t/!d' 

strings containing "art" 
plus at least one character 
preceding it like "Bart" 
"cart" "part" "apart" 

strings lacking "art" or at 
least one character before it 
like "artistic" "aft" "draft" 

.art as in  
awk '/.art/' 
grep '.art' 
sed '/.art/!d' 

strings containing "h" 
<some character> "rd" like 
"hard" "herd" 

strings lacking that pattern 
like "horse" "bullet" "gun" 

h.rd as in  
awk '/h.rd/' 
grep 'h.rd' 
sed '/h.rd/!d' 



High Performance Linux Shell Programming Reference 

725 

Items to match Items to not match Regular expression 
strings containing "har" 
followed by at least one 
character like "hark" 
"harm" "harp" "hart" 

strings lacking that pattern 
like "attack" "Buford" 
"fence" 

har. as in  
awk '/har./' 
grep 'har.' 
sed '/har./!d' 

strings containing at least 
one character followed by 
"ar" like "bar" "cart" "far" 
"gar" "jar" "parse" "stars" 

strings lacking that pattern 
like "run" "can" "hurry" 
"twist" "argue" 

.ar as in  
awk '/.ar/' 
grep '.ar' 
sed '/.ar/!d' 

strings containing "ba" plus 
at least one more character 
like "bat" "bar" "baggage" 

strings lacking "ba" plus at 
least one more character 
like "ba" "dog" "cat" 

ba. as in  
awk '/ba./' 
grep 'ba.' 
sed '/ba./!d' 

 

Searches Involving Lists of Characters 
A placeholder like the period can solve many search problems, but sometimes we have to narrow things 
down more precisely than just some character in a particular spot. That is when lists become handy.  

Lists of possible character matches are enclosed in square brackets "[...]". For instance, the expression 
w[aio]n would match "wan," "win," and "won." As you can see from this example, one and only one 
character out of the bracketed set needs to or can match. In other words, s[aei]t would match "sat," 
"set," and "sit," but not "seat" even though both "e" and "a" appear in the list.  
If you want to look for possible misspellings or alternate spellings of a word, character lists can be useful. 
The expression gr[ae]y matches both "gray" and "grey." The expression sep[ae]rate matches 
"separate" and "seperate." The expression [CK]rist[ei]n matches "Cristen," "Kristen," "Cristin," and 
"Kristin." 

As in the tables above, examples in each case are provided for awk, grep, and sed. 

Examples of Searches Involving Lists of Characters 
 

Items to match Items to not match Regular expression 
strings containing "do" 
"go" 

strings lacking "do" and 
"go" like "Do" "get" "Lee" 

[dg]o as in  
awk '/[dg]o/' 
grep '[dg]o' 
sed '/[[dg]o/!d' 

strings containing "hard" 
"herd" 

strings lacking "hard" and 
"herd" like "horse" "bullet" 
"gun" 

h[ae]rd as in  
awk '/h[ae]rd/' 
grep 'h[ae]rd' 
sed '/h[ae]rd/!d' 

strings containing "hard" 
"hark" "harm" "harp" 
"hart" 

strings lacking those words 
like "attack" "Buford" 
"fence" 

har[dkmpt] as in  
awk '/har[dkmpt]/' 
grep 'har[dkmpt]' 
sed '/har[dkmpt]/!d' 



E. J. Smeltz  

726 

Items to match Items to not match Regular expression 
strings containing "bar" 
"car" "far" "gar" "jar" "par" 

strings lacking those words 
like "fat" "can" "hurry" 

[bcfgjp]ar as in  
awk '/[bcfgjp]ar/' 
grep '[bcfgjp]ar' 
sed '/[bcfgjp]ar/!d' 

strings containing "bar" 
"car" "bat" "cat" 

strings lacking those words 
like "bet" "can" "hurry" 

[bc]a[rt] as in  
awk '/[bc]a[rt]/' 
grep '[bc]a[rt]' 
sed '/[bc]a[rt]/!d' 

strings containing "Bart" 
"bart" "cart" 

strings lacking those words 
like "Bert" "cot" "hurry" 

[Bbc]art as in  
awk '/[Bbc]art/' 
grep '[Bbc]art' 
sed '/[Bbc]art/!d' 

 

Searches Involving Ranges of Characters 
As is plainly seen in the examples above, lists of characters can be useful in regular expressions. When a 
number of contiguous characters is involved in a list, that list can be described as a range. For example, the 
list [abcde] can be described as the range [a-e]. Digits can be described as the range [0-9]. The 
lowercase alphabet is [a-z] and the uppercase, [A-Z]. 
Multiple ranges can be used together within a single set of brackets. The entire alphabet can be stated as 
[A-Za-z]. Hexadecimal numbers are [0-9A-Fa-f]. The order of the ranges within the brackets does 
not matter, so hexadecimals could be stated just as validly by [A-F0-9a-f] or by [a-fA-F0-9]. 

As in the tables above, examples in each case are provided for awk, grep, and sed. 

Examples of Searches Involving Ranges of Characters 
 

Items to match Items to not match Regular expression 
strings containing any 
lowercase letter like "Joe" 
"fire" "win" 

strings lacking lowercase 
letters like "HIT" "23454" 
"!@#$%" 

[a-z] as in  
awk '/[a-z]/' 
grep '[a-z]' 
sed '/[a-z]/!d' 

strings containing any 
uppercase letter like "Joe" 
"HIT" "Win!" 

strings lacking uppercase 
letters like "shoot" "23454" 
"!@#$%" 

[A-Z] as in  
awk '/[A-Z]/' 
grep '[A-Z]' 
sed '/[A-Z]/!d' 

strings containing any digit 
like "17" "76" "313" 
"23454" 

strings lacking digits like 
"shoot" "baboon" 
"!@#$%" 

[0-9] as in  
awk '/[0-9]/' 
grep '[0-9]' 
sed '/[0-9]/!d' 

strings containing any 
hexadecimal digit like 
"1A" "ED" "24" "FCFF" 

strings lacking 
hexadecimal digits like 
"shoot" "town" "!@#$%" 

[0-9A-Fa-f] as in  
awk '/[0-9A-Fa-f]/' 
grep '[0-9A-Fa-f]' 
sed '/[0-9A-Fa-f]/!d' 

strings containing "a" or 
"b" or "c" or "x" or "y" or 
"z" like "another" "bike" 
"many" "jazz" 

strings lacking those letters 
like "hit" "miss" "shoot" 

[a-cx-z] as in  
awk '/[a-cx-z]/' 
grep '[a-cx-z]' 
sed '/[a-cx-z]/!d' 



High Performance Linux Shell Programming Reference 

727 

Items to match Items to not match Regular expression 
strings containing any digit 
or uppercase letter like 
"Joe" "HIT" "Win!" 
"phase1" "23454" 

strings lacking those 
characters like "shoot" 
"!@#$%" "bullet" 

[0-9A-Z] as in  
awk '/[0-9A-Z]/' 
grep '[0-9A-Z]' 
sed '/[0-9A-Z]/!d' 

strings containing the digits 
"5" through "9" or the 
letters "f" through "m" like 
"may1" "550" "fan" 

strings lacking those 
characters like "shoot" 
"!@#$%" "ban" 

[5-9f-m] as in  
awk '/[5-9f-m]/' 
grep '[5-9f-m]' 
sed '/[5-9f-m]/!d' 

 

Searches Involving POSIX Character Class Definitions 
In Section 1, the chapter "POSIX Character Class Definitions" shows which classes exist and which 
characters belong to each class. Below is a brief summary of the classes with regular expressions 
equivalent to them in ASCII. 

• [:alnum:] -- alphanumeric characters -- [0-9A-Za-z] 
• [:alpha:] -- alphabetic characters -- [A-Za-z] 
• [:blank:] -- horizontal whitespace -- [\011\040] 
• [:cntrl:] -- control characters -- [\000-037\177] 
• [:digit:] -- decimal digits -- [0-9] 
• [:graph:] -- printable characters without <space> [\041-\176] 
• [:lower:] -- lowercase letters -- [a-z] 
• [:print:] -- printable characters including <space> -- [\040-\176] 
• [:punct:] -- punctuation -- [\041-\057\072-\100\133-\140\173-\176] 
• [:space:] -- horizontal and vertical whitespace -- [\011-\015\040] 
• [:upper:] -- uppercase letters -- [A-Z] 
• [:xdigit:] -- hexadecimal digits -- [0-9A-Za-z] 

As you can see, the class names above apply to specific ranges or collections of characters. And it does 
indeed make sense to apply names to them. It is much more convenient to specify the printable characters 
by the name "[:print:]" than to have to list each character in that class every time you want to match them. 
Even in range notation it would be cumbersome.  

When using class names with awk, grep, and sed, you must enclose the class name in another set of 
square brackets, as in [[:alnum:]]. A grep command that looks for lines containing alphanumerics 
would then be  

grep '[[:alnum:]]' 

When using class names with the tr command, though, the names do not require the second set of square 
brackets. For example, a filter to delete everything but alphanumeric characters and newlines would look 
like this:  

tr -dc '[:alnum:]\n' 

Note: the grep and sed commands do not accept octal character designations such as "\011", therefore the 
one-liners in the table below reflect that fact. Although awk can accept certain octal values, those values 



E. J. Smeltz  

728 

must decode to valid search characters, so it is generally best practice to use alphanumeric search 
characters with awk when possible. 

As in the tables above, examples in each case are provided for awk, grep, and sed. 

Examples of Searches Involving POSIX Character Class Definitions 
 

Items to match Items to not match Regular expression 
strings containing 
alphanumeric characters 
like "great" "day" 
"marching" "123" "732" 

strings lacking digits and 
alphabetic characters like 
"#$%^" "&*(@" 

[0-9A-Za-z] or 
[[:alnum:]] as in  
awk '/[0-9A-Za-z]/' 
awk '/[[:alnum:]]/' 
grep '[0-9A-Za-z]' 
grep '[[:alnum:]]' 
sed '/[0-9A-Za-z]/!d' 
sed '/[[:alnum:]]/!d' 

strings containing 
alphabetic characters like 
"that" "good" "news" 

strings lacking alphabetic 
characters like "4253" 
")(*&" 

[A-Za-z] or 
[[:alpha:]] as in  
awk '/[A-Za-z]/' 
awk '/[[:alpha:]]/' 
grep '[A-Za-z]' 
grep '[[:alpha:]]' 
sed '/[A-Za-z]/!d' 
sed '/[[:alpha:]]/!d' 

strings containing certain 
"blank" characters, namely, 
<horizontal tab> and 
<space> 

strings lacking horizontal 
tabs and spaces 

[\011\040] or 
[[:blank:]] as in  
awk '/[\011\040]/' 
awk '/[[:blank:]]/' 
grep '[[:blank:]]' 
sed '/[[:blank:]]/!d' 

strings containing control 
characters like <htab> 
<vtab> 

strings lacking control 
characters like "a" "quick" 
"brown" "fox" 

[[:cntrl:]] as in  
awk '/[[:cntrl:]]/' 
grep '[[:cntrl:]]' 
sed '/[[:cntrl:]]/!d' 

strings containing digits 
like "7453" "4539" 

strings lacking digits like 
"happy" "days" 

[0-9] or 
[[:digit:]] as in  
awk '/[0-9]/' 
awk '/[[:digit:]]/' 
grep '[0-9]' 
grep '[[:digit:]]' 
sed '/[0-9]/!d' 
sed '/[[:digit]]/!d' 

strings containing printable 
characters not including 
<space> like "first" "2nd" 
"3rd!" 

strings lacking printable 
characters like <htab> 
<vtab> 

[[:graph:]] as in  
awk '/[[:graph:]]/' 
grep '[[:graph:]]' 
sed '/[[:graph:]]/!d' 



High Performance Linux Shell Programming Reference 

729 

Items to match Items to not match Regular expression 
strings containing 
lowercase characters 
"Head" "shoulders" 
"123contact" "jump!" 

strings lacking lowercase 
characters like "BUD" 
"65345"  

[a-z] or 
[[:lower:]] as in  
awk '/[a-z]/' 
awk '/[[:lower:]]/' 
grep '[a-z]' 
grep '[[:lower:]]' 
sed '/[a-z]/!d' 
sed '/[[:lower:]]/!d' 

strings containing printable 
characters including 
<space> like "that way" 
"hi?" "34u" 

strings lacking printable 
characters <null> 
<backspace> 

[[:print:]] as in  
awk '/[[:print:]]/' 
grep '[[:print:]]' 
sed '/[[:print:]]/!d' 

strings containing 
punctuation characters like 
"1,2,3" "5.9" "no!" 

strings lacking punctuation 
characters "baby" "face" 
"Mollie" 

[[:punct:]] as in  
awk '/[[:punct:]]/' 
grep '[[:punct:]]' 
sed '/[[:punct:]]/!d' 

strings containing 
horizontal and vertical 
whitespace characters like 
<htab> <vtab> <newline> 

strings lacking horizontal 
and vertical whitespace 
characters "no" 
"whitespace" "here" 

[[:space:]] as in  
awk '/[[:space:]]/' 
grep '[[:space:]]' 
sed '/[[:space:]]/!d' 

strings containing 
uppercase characters 
"Jerry" "St. Lo" "Big" 

strings lacking uppercase 
characters "boy" "dog" 
"farm"  

[A-Z] or 
[[:upper:]] as in  
awk '/[A-Z]/' 
awk '/[[:upper:]]/' 
grep '[A-Z]' 
grep '[[:upper:]]' 
sed '/[A-Z]/!d' 
sed '/[[:upper:]]/!d' 

strings containing 
hexadecimal digits like 
"AF" "90DF" "123" 

strings lacking 
hexadecimal digits "trick" 
"guppy" "jimmy" 

[0-9A-Fa-f] or 
[[:xdigit:]] as in  
awk '/[0-9A-Fa-f]/' 
awk '/[[:xdigit:]]/' 
grep '[0-9A-Fa-f]' 
grep '[[:xdigit:]]' 
sed '/[0-9A-Fa-f]/!d' 
sed '/[[:xdigit:]]/!d' 

 

Searches Involving Varying Numbers of Characters 
Up to this point in this chapter, we have examined only what some might call "well-behaved" target 
strings. The target strings have had a set length and a set content. Not all target strings are like that, 
though. 
Sometimes we want to look for strings like "Dad" or "Daddy," but not "Dadd." In other words, the target 
string could be one length or another but not something in between. Or the target string could be a number 
of lengths with a number of different contents. These are not well-behaved target strings. That being the 
case, we have a number of metacharacters to use.  



E. J. Smeltz  

730 

• The parentheses "(...)" define a group of characters as in the expression (un)?do, that would 
match "do" and "undo". Because of the parentheses, the "un" letters are considered one entity, and 
that entity in this example can either be there or not there, but not half-there. It's all or nothing. 

• The square brackets "[...]" define a list of characters as in the expression b[ae]d, that would match 
"bad" and "bed." Only one of those characters in that list can take the place of the middle character 
at a time to match the words "bad" or "bed." We have already seen many examples of the square 
brackets in use. 

• The period "." specifies a 1-character match of any character other than newline. For example, the 
expression "for.." would match "forks" and "forth". 

• The question mark "?" specifies a 0- or 1-time match of the character just before it. For example, 
the expression FAA? allows the second "A" to be present or absent in the target string. That search 
expression would therefore match both "FA" and "FAA". Groups of characters can be handled in 
this way, too. The expression exert(ion)? would match either "exert" or "exertion". 

• The asterisk "*" specifies a 0 to an unlimited number of matches of the character just before it. For 
example, the expression 5543* allows "3" to occur an unlimited number of times. Or it could be 
absent and still be considered a match. Groups are also supported. The expression M(iss)*ippi 
would match "Mississippi", but it would also match "Mippi" and "Missississississippi". 

• The plus sign "+" specifies a 1 to unlimited number of matches of the character just before it. For 
example, the expression 5543+ allows "3" to occur an unlimited number of times. But it must 
appear at least once in order to be considered a match. Another way to match at least one 
occurrence would be 55433* in which the first "3" must be present, but the second or any number 
of other "3"s right after that need not be. Groups are also supported. The expression M(iss)+ippi 
would match "Mississippi", but it would also match "Missippi" and "Missississississippi". The 
asterisk method to match all of those would be M(iss)(iss)*ippi 

• The vertical bar "|" specifies an either/or condition: either one part of the expression can match, or 
the other part can. For example, the expression (r|(sc))ent would match both "rent" and 
"scent". If we wanted to get fancy, the regular expression 
(r|s|(sc)|(asc)|(pres)|(cresc))ent would match "rent", "sent", "scent", "ascent", 
"present", or "crescent". 

With the above arsenal of metacharacters along with the ones we examined previously, it might be 
difficult to imagine a target string for which a workable search expression could not be crafted.  

As you may recall, certain metacharacters used with the grep and sed commands need to be escaped with 
a backslash "\" in order to behave the same as with awk. Those metacharacters are plus sign "+", question 
mark "?", pipe "|", left paren "(", and right paren ")". 

As in the tables above, examples in each case are provided for awk, grep, and sed. 



High Performance Linux Shell Programming Reference 

731 

Examples of Searches Involving Variable Numbers of Characters 
 

Items to match Items to not match Regular expression 
strings containing "g" 
followed by "e" like 
"age" "gone" "gorge" 
"gauge" "gauges" 

strings like "ego" "gantry" 
"Great"  

g.*e as in  
awk '/g.*e/' 
grep 'g.*e' 
sed '/g.*e/!d' 

strings containing "h" 
followed by "e" followed 
by "s" like "heats" "hews" 
"shrews" "sheets" 

strings like "she" "hear" 
"west" "hats" 

h.*e.*s as in  
awk '/h.*e.*s/' 
grep 'h.*e.*s' 
sed '/h.*e.*s/!d' 

strings containing "had" 
"head" "hard" "heard" 

strings like "heed" "hear" 
"hearth" 

he?ar?d as in  
awk '/he?ar?d/' 
grep 'he\?ar\?d' 
sed '/he\?ar\?d/!d' 

strings containing "Dad" 
"Daddy" 

strings like "dad" "Dadd" 
"Daddi" 

Dad(dy)? as in  
awk '/Dad(dy)?/' 
grep 'Dad\(dy\)\?' 
sed '/Dad\(dy\)\?/!d' 

strings containing "lad" 
"ladder" 

strings like "dal" "ladd" 
"laddar" 

lad(der)? as in  
awk '/lad(der)?/' 
grep 'lad\(der\)\?' 
sed '/lad\(der\)\?/!d' 

strings containing "let" 
"letter" 

strings like "lot" "ladder" let(ter)? as in  
awk '/let(ter)?/' 
grep 'let\(ter\)\?' 
sed '/let\(ter\)\?/!d' 

strings containing "excite" 
"excitement" 

strings like "excitation" 
"exit" "cement" 

excite(ment)? as in  
awk '/excite(ment)?/' 
grep 'excite\(ment\)\?/' 
sed '/excite\(ment\)\?/!d' 

strings containing "decide" 
"undecide" "decided" 
"undecided" 

strings like "deciding" 
"decision" "decade" 

(un)?decided? as in  
awk '/(un)?decided?/' 
grep '\(un\)\?decided\?' 
sed '/\(un\)\?decided\?/!d' 

strings containing "red" 
"reed" 

strings like "Red" "rod" 
"rot" "reef" 

re+d or ree?d or ree*d as in  
awk '/re+d/' 
awk '/ree?d/' 
awk '/ree*d/' 
grep 're\+d' 
grep 'ree\?d' 
grep 'ree*d' 
sed '/ree\+d/!d' 
sed '/ree\?d/!d' 
sed '/ree*d/!d' 



E. J. Smeltz  

732 

Items to match Items to not match Regular expression 
strings containing "cares" 
"caress" 

strings like "cart" "carres" 
"prison"  

cares+ or caress? or  
caress* as in  
awk '/ cares+/'  
awk '/ caress?/' 
awk '/ caress*/' 
grep ' cares\+' 
grep ' caress\?' 
grep ' caress*' 
sed '/ cares\+/!d' 
sed '/ caress\?/!d' 
sed '/ caress*/!d' 

strings containing "space" 
"spade" "spare" "spate" 

strings like "stale" "glade" 
"stare" 

spa(c|d|r|t)e or  
spa[cdrt]e as in  
awk '/ spa(c|d|r|t)e/'  
awk '/spa[cdrt]e/' 
grep 'spa[cdrt]e' 
sed '/spa[cdrt]e/!d' 

strings containing "work" 
"worth" 

strings like "wart" "worse" wor(k|(th)) as in  
awk '/wor(k|(th))/' 
grep 'wor\(k\|\(th\)\)' 
sed '/wor\(k\|\(th\)\)/!d' 

strings containing "doubt" 
"double" 

strings like "dubs" "buds" doub(t|(le)) as in  
awk '/doub(t|(le))/' 
grep 'doub\(t\|\(le\)\)' 
sed '/doub\(t\|\(le\)\)/!d' 

strings containing "mat" 
"what" 

strings like "met" "whet" (m|(wh))at as in  
awk '/(m|(wh))at/' 
grep '\(m\|\(wh\)\)at' 
sed '/\(m\|\(wh\)\)at/!d' 

strings containing "bead" 
"bears" 

strings like "beer" "bear" bea(d|(rs)) as in  
awk '/bea(d|(rs))/' 
grep 'bea\(d\|\(rs\)\)' 
sed '/bea\(d\|\(rs\)\)/!d' 

strings containing "tend" 
"tenth" 

strings like "tens" "ton" 
"turtle" 

ten(d|(th)) as in  
awk '/ten(d|(th))/' 
grep 'ten\(d\|\(th\)\)' 
sed '/ten\(d\|\(th\)\)/!d' 

 

Searches Involving Unprintable Characters 
Let's take on what might at first glance appear to be an impossible challenge: matching unprintable 
characters such as <tab> or <alert> or 003 octal. The first problem is how to tell the script to look for such 
a thing. First, does any our three main search commands awk, grep, or sed have any built-in means to 
signify unprintable characters? Yes, awk can cover the entire range 000-377 octal. Below is an example 
that matches octal 3 

awk '/\003/{print $0}' 

The grep command is not equipped to deal with such characters. But it does permit us to cheat a bit by 
allowing another command to generate the character(s) for which grep will search. In other words, grep 
"\003" will not work, but we can match it with 



High Performance Linux Shell Programming Reference 

733 

grep "$(printf "\003")"        # or 
grep "$(printf "\\003")" 

I have not found grep able to match a null (octal 000) using this method, but it is able to match certain 
other unprintables. In my testing, it could match some of but not the whole range 001-377. 

Newer versions of the sed command are able to match unprintables and output unprintables using this 
method. The line below matches octal 3 and changes it to bell (octal 7). 

sed "s/$(printf "\003")/$(printf "\007")/g" 

In my testing, the line below worked as well. 
sed "s/$(printf "\\003")/$(printf "\\007")/g" 

Some older versions of sed do not lend themselves to this kind of matching. Some can, however, match 
certain unprintables based on their backslash designations such as "\b" or "\t". 

Searches Using the Divide and Conquer Approach 
Despite the versatility of the metacharacters and search techniques we have seen, there is always the "X-
factor," the situation you cannot anticipate or design for based on what you already know. No matter what 
you do or how you plan, it can emerge from nowhere and bite you in the back pockets before you know 
what is happening. It is a special case. 
Special cases require special techniques. Consider this the "special weapons and tactics" part of the 
chapter.  
The math that was developed by Stephen Kleene indicates that any complex target string can be broken 
down into simpler parts. Broken into enough parts, each part of the target string can be coded for and 
handled appropriately. But how can a search be broken into multiple parts? 

Multi-part Searches Performed in Parallel: the "OR" function 
The awk command is actually a programming language. As such, it possesses many abilities that often go 
unused. Breaking down a search into multiple parts with awk is easy to do. See the example below. 

awk ' 
/good/ {print $0;next} 
/bad/  {print $0;next} 
/ugly/ {print $0;next} 
(next}' 

Above we see a search executed in three parallel parts. If awk sees the word "good" or "bad" or "ugly" in a 
string, it outputs the associated line. In essence, we have three separate unrelated searches being performed 
at the same time on the same input data stream. The next is there to prevent the same line from being 
output multiple times if it contains more than one of the search strings. A similar thing can be done with 
grep and sed as is shown below. 

grep -e "good" -e "bad" -e "ugly" 

sed '/\(good\)\|\(bad\)\|\(ugly\)/!d' 



E. J. Smeltz  

734 

The three examples above are functionally equivalent. They perform an "OR" function in applying 
conditions to the strings to see which ones match. Such a configuration with any of these three commands 
enables us to execute in parallel any collection of searches on a stream of data. 

Multi-part Searches Performed in Series: the "AND" function 
Perhaps we need to perform additional tests on a line once it has matched a given search expression. 
Maybe we need to find a line that contains "good," "bad," and "ugly" in any order on the same line. 
Finding that kind of target string would be tough to do based on only the ideas that we have discussed so 
far in this chapter. One way to find such a combination of content would be with three grep commands in 
series as shown below. 

grep "good" | grep "bad" | grep "ugly" 

Such a one-liner would pass only those lines that contained all three words. If we wanted to do the same 
sort of thing with awk or sed, we could line up those commands in series the same as we did with grep: 

awk '/good/' | awk '/bad/' | awk '/ugly/'              # or 
sed '/good/!d' | sed '/bad/!d' | sed '/ugly/!d' 

That approach, although it works, seems rather blunt to me. What if we used the abilities in awk to 
perform all the necessary checks with one command? 

awk '/good/ {if (($0~/bad/)&&($0~/ugly/)){print $0}}' 

Or we could do all the checking with one explicit if statement as in 
awk '{if (($0~/good/)&&($0~/bad/)&&($0~/ugly/)){print $0}}' 

The above one-liner might not look like much, but consider this for a moment: the "OR" approach allows 
us to match any one of a number of conditions, and the "AND" approach allows us to match many 
combinations of conditions. 

Handy Regular Expressions 
Below are some expressions for matching things you might encounter in your scripting. 
social security number: "###-##-####" 

awk '/[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]/' 
egrep '[0-9]{3}-[0-9]{2}-[0-9]{4}' 
grep -E '[0-9]{3}-[0-9]{2}-[0-9]{4}' 
grep '[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]' 
sed '/[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]/!d' 

7-digit phone number: "###-####" 
awk '/[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]/' 
egrep '[0-9]{3}-[0-9]{4}' 
grep -E '[0-9]{3}-[0-9]{4}' 
grep '[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]' 
sed '/[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]/!d' 



High Performance Linux Shell Programming Reference 

735 

10-digit phone number: "###-###-####" 
awk '/[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]/' 
egrep '[0-9]{3}-[0-9]{3}-[0-9]{4}' 
grep -E '[0-9]{3}-[0-9]{3}-[0-9]{4}' 
grep '[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]' 
sed '/[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]/!d' 

10-digit phone number with parentheses: "(###)###-####" 
awk '/\([0-9][0-9][0-9]\)[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]/' 
egrep '\([0-9]{3}\)-[0-9]{3}-[0-9]{4}' 
grep -E '\([0-9]{3}\)-[0-9]{3}-[0-9]{4}' 
grep '([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]' 
sed '/([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]/!d' 

positive or negative integer number: "####" (variable number of digits) 
awk '/^[-+]?[0-9]+$/' 
grep '/^[-+]\?[0-9]\+$' 
sed '/^[-+]\?[0-9]\+$/!d' 

positive or negative hexadecimal number: "####" (variable number of digits) 
awk '/^[-+]?[0-9A-Fa-f]+$/' 
grep '/^[-+]\?[0-9A-Fa-f]\+$' 
sed '/^[-+]\?[0-9A-Fa-f]\+$/!d' 

decimal number: "###.###" (variable numbers of digits before and after decimal) 
awk '/^[-+]?[0-9]+\.[0-9]+$/' 
grep '^[-+]\?[0-9]\+\.[0-9]\+$' 
sed '/^[-+]\?[0-9]\+\.[0-9]\+$/!d' 

To allow the absence of a digit after a decimal point as in "50." for the above example, use the expressions 
below 

awk '/^[-+]?[0-9]+\.[0-9]*$/' 
grep '^[-+]\?[0-9]\+\.[0-9]*$' 
sed '/^[-+]\?[0-9]\+\.[0-9]*$/!d' 

To also allow the absence of a digit before a decimal point as in ".50" for the above example, use the 
expressions below 

awk '/^[-+]?([0-9]+\.[0-9]*|\.[0-9]+)$/' 
awk '/^[-+]?[0-9]+\.[0-9]*$/' 
grep '^[-+]\?[0-9]\+\.[0-9]*$' 
sed '/^[-+]\?[0-9]\+\.[0-9]*$/!d' 

integer or decimal number including those with leading or trailing decimals: 
awk '/^[-+]?([0-9]+[.]?[0-9]*$|[-+]?[.][0-9]+$)/' 
grep -e '^[-+]\?[0-9]\+[.]\?[0-9]*$' -e '[-+]\?[.][0-9]\+$' 
grep '^[-+]\?\([0-9]\+[.]\?[0-9]*$\|[-+]\?[.][0-9]\+$\)' 
sed '/^[-+]\?\([0-9]\+[.]\?[0-9]*$\|[-+]\?[.][0-9]\+$\)/!d' 



E. J. Smeltz  

736 

exponential number:  
awk '/^[-+]?([0-9]+[.]?[0-9]+)([ ][eE][-+]?[0-9]+)$/' 
grep '^[-+]\?\([0-9]\+[.]\?[0-9]\+\)\([ ][eE][-+]\?[0-9]\+\)$' 
sed '/^[-+]\?\([0-9]\+[.]\?[0-9]\+\)\([ ][eE][-+]\?[0-9]\+\)$/!d' 

number of any format: 
awk '/^[-+]?([0-9]+[.]?[0-9]*)([ ][eE][-+]?[0-9]+)?$/' 
grep '^[-+]\?\([0-9]\+[.]\?[0-9]*\)\([ ][eE][-+]\?[0-9]\+\)\?$' 
sed '/^[-+]\?\([0-9]\+[.]\?[0-9]*\)\([ ][eE][-+]\?[0-9]\+\)\?$/!d' 

 



Extensive, example-based Linux shell programming reference includes an 
English-to-shell dictionary, a tutorial and handbook, and many tables of 
information useful to programmers. Besides listing more than 2000 shell one-
liners, it explains the principles and techniques of how to increase 
performance (execution speed, reliability, and efficiency), which apply to many 
other programming languages beyond shell. 

 
 

 
High Performance Linux Shell 

Programming Reference 
2015 Edition 

  
 
 

Order the complete book from  
 

Booklocker.com 
 

http://www.booklocker.com/p/books/7831.html?s=pdf 
 

or from your favorite neighborhood  
or online bookstore.  

 
 
 




